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Abstract—Singular spectrum analysis (SSA) is a nonparamet-
ric spectral estimation method that decomposes a time series
signal into interpretable components. In this paper, we introduce
a new multilinear generalization of SSA, called higher-order
multivariate SSA (HO-MSSA), specifically designed to handle
multivariate and multichannel time-series signals. The proposed
method employs time-delay embedding and tensor SVD to trans-
form multichannel time-series signals into trajectory tensors,
subsequently decomposing them into distinct components. Similar
to the classical SSA, these components hold significant inter-
pretability. The effectiveness of HO-MSSA is illustrated through
its application to the analysis of multichannel biomedical signals.

Index Terms—Singular spectrum analysis, multivariate time
series, tensor decomposition, spectral clustering.

I. INTRODUCTION

Singular spectrum analysis (SSA) stands out as a powerful
technique for time series analysis [1]. SSA decomposes a
signal into several interpretable components, such as slowly
time-varying trends, harmonic components, and noise. No-
tably, there are no assumptions about parametric models or
stationarity-type conditions for the time series, making SSA
a model-free method with broad applicability. We refer the
readers to [1], [2] for good references on the SSA literature.

Recently, there has been an increasing interest in the analysis
of multivariate and high-dimensional data, particularly with the
rise in big data [3]. In the literature, several multivariate SSA
(MSSA) techniques have emerged for analyzing multivariate
time series, following the approach of Golyandina et al. in [1]
for univariate time series and in [4] for multivariate time series.
Noteworthy among these techniques are methods like vertical
MSSA and horizontal MSSA in [5], 2D-SSA in [6], 2D-SSA
in [7], and principal component trajectories (PCT) [8], among
others (see [9] for an extensive overview of MSSA). However,
the aforementioned MSSA techniques typically rely on the
singular value decomposition (SVD) on the trajectory matrix
to extract elementary components.! Consequently, they may
not fully exploit features of multivariate time series and might
overlook crucial aspects such as spatial correlation, multilinear
relationships, and higher-order statistics.

In parallel, tensors, which are multiway arrays, provide
natural representations for multivariate and high-dimensional
data [10]. Tensor decomposition allows for the factorization

IThe trajectory matrix in MSSA may take various forms, including Hankel,
stacked Hankel, Hankel-block-Hankel, or quasi-Hankel matrices, depending
on the techniques employed.

of tensors into basic components (e.g., vectors, matrices, or
“simpler” tensors), making it a powerful data processing tool
with applications in various areas [10]-[13]. Our study aims
to develop a tensor-based MSSA approach. Previous studies
have made efforts to develop tensor-based (M)SSA methods
[14]-[19]. However, they are often tailored to specific datasets
or applications, such as sleep EEG [14], [15], fault diagnosis
[16]-[18], and hyperspectral image analysis [19], limiting their
applicability. Therefore, the need for a generalized tensor-
based (M)SSA approach is evident.

In this paper, we introduce a multilinear extension of SSA
designed to handle multichannel time series, which we refer to
as higher-order multivariate SSA (HO-MSSA).? Specifically,
we employ a modified time-delay embedding technique that
can adapt to various window lengths and step sizes, enabling
the transformation of any multichannel time series into tra-
jectory tensors. The decomposition of these trajectory tensors
into elementary components is performed by using tensor
SVD (tSVD) technique [22], a multiway extension of SVD
for higher-order tensors. Subsequently, a spectral clustering
method is employed to group these elementary components. To
extract the underlying time-series signals, we introduce a new
block diagonal averaging technique applied to frontal slices
of the reconstructed tensor components. Last but not least,
we validate the efficacy of HO-MSSA with the application of
extracting fetal ECG from maternal ECG signals.

Notations: In this paper, we use the following conventions.
Lowercase letters represent scalars (e.g., x), while boldface
capital letters indicate vectors (e.g., x). Matrices and tensors
are denoted using boldface capital letters (e.g., X) and bold
calligraphic letters (e.g., X)), respectively. The (1,29, ...,%y)-
th element of X is denoted as X (71,42, ...,%,). The transpose
operation is represented as ()", and the Frobenius norm as
| ||7. Symbols e, @, and = represents the t-product, tensor
concatenation and circular convolution, respectively. The func-
tions “fft(-)” and “ifft(-)” denote fast Fourier transform and
its inverse operator.

2In the literature, a variant of SSA is discussed in [20], [21], also referred
to as higher-order SSA. This variant integrates basic SSA with higher-order
statistics of univariate time series. Notably, our proposed method deviates from
this approach by employing tensor analysis on multiple trajectory matrices
derived from multivariate time series. In our context, the term “higher-order”
in HO-MSSA refers to both the increased dimensionality and the order of the
trajectory tensor formed by stacking all trajectory matrices.



II. PRELIMINARIES
A. Singular Spectrum Analysis (SSA)
SSA is performed in four main steps, namely embedding,
decomposition, grouping, and diagonal averaging [1].
Step 1. (Embedding): Embedding, also known as Hanke-
lization, transforms a time series vector x € RV*! into the
following Hankel matrix

z(1) x(2) x(J+1)
X - x(:2) x(:3) x(J:+ 2) , o
z(W) (W +1) z(N)

where W is the window length. Here, X is a trajectory matrix
and its columns are called W-lagged vectors of x. In SSA,
the window length W should be sufficiently large so that each
W -lagged vector incorporates an essential part of the behavior
of the time-series signal x.

Step 2. (Decomposition): At this step, we perform the
singular value decomposition (SVD) of the trajectory matrix

X =USV™ =35, Moupvy, )
where K =rank(X); U =[uj,us,...,ux] and V = [vy, vy,

., Vi | are left and right singular vector matrices, and they
are orthogonal matrices; and A = S(k, k) is the k-th singular
value of X. The collection (A, ug, vy) is k-th eigentriple of
the SVD of X. Rows and columns of X are subseries of the
original time series x. Therefore, the left and right singular
vectors also have temporal structures and hence can also be
regarded as time series.

Step 3. (Grouping): The purpose of this step is to separate
additive components of time series, achieved by partitioning
the set of indices {1,2,..., K} into R (with R < K) disjoint
subsets I, I, ...,Ir and forming

X=%" X,, where X, = Yier, Aiuiv]. 3)
One of the most widely-used technique for extracting com-
ponents {X,}2 is to use the matrix of W-correlations [1].
A necessary condition for the (approximate) separability of
two time series is the (approximate) zero W-correlation of the
reconstructed components. The eigentriples belonging to the
same group can correspond to highly correlated components
of the time series.

Step 4. (Diagonal Averaging): If components of the series
are distinctly separated and the indices divided accordingly,
then all the matrices in (3) are Hankel matrices, facilitating
the direct extraction of corresponding time series. However,
in practice, such perfect separation may not be satisfied and
we require a method to transform an arbitrary matrix into a
Hankel matrix and subsequently into a signal, as follows

,Z F(gn-7+1) ifl<n<W
n j=1
w
%,(n) = WZ com—j+1) if W<n<J 4)
1 w
Nonil Z X, (j,n—j+1) otherwise.

j=n—-J+1
This step is called diagonal averaging or de-hankelization.

B. Tensor Singular Value Decomposition

Tensor SVD (t-SVD) is a multiway extension of SVD for
factorizing higher-order tensors [22]. Under the t-SVD format,
a tensor X e R™>*™2*™3 jg decomposed into three tensors
U,S, and V as follows:

X=UeSeV', (5)
where U € R"*"1X™3 and YV e R™2*™2*X"3 are orthogonal
tensors (e, UeU' =U" oU = T); S € RM*"2*™ jg an
f-diagonal tensor whose frontal slices are diagonal. The t-
product “e” is defined as follows

C=AeB <= C(i,j,2) = Lt Al 1) * B(L,j,1). - (6)
Note that when ng = 1, the t-product becomes the matrix
product and (5) boils down to the classical SVD.

The t-SVD algebraic framework is quite different from the
classical multilinear algebra in other types of tensor decom-
position. Leveraging the t-product and Fourier transform, it
extends various linear and multilinear operations from matrices
to tensors, including transpose, orthogonality, and inverse [22].

III. HIGHER-ORDER MULTIVARIATE SINGULAR
SPECTRUM ANALYSIS

In this section, we introduce HO-MSSA (Higher-Order
MSSA), a multilinear extension of SSA for handling multi-
channel and multivariate time-series signals. Similar to basis
SSA, HO-MSSA contains four main steps, including time
delay embedding, tensor SVD, grouping and reconstruction,
as illustrated in Fig. 1.

Step 1. (Time Delay Embedding): In this step, we employ
the following time delay embedding (TDE) transformation

z(1)  x(d+1) x(Id+1)
TDEu.s(x) = x(EQ) x(5;+ 2) :v(I(SE+ 2) e
x(W) x(6+W) x(I6+W)

with a window length W > 2 and a step size ¢ > 1. Here, TDE
can be considered as a generalized version of Hankelization (1)
and segmentation [23] techniques for embedding time-series
signals. When § =1, (7) corresponds to Hankelization (1),
while it becomes the segmentation if 6 = W.

Interestingly, Boussé ef al. in [23] presented a common
class of time-series signals in which (1) can promote low-rank
approximation to signals. Specifically, if x is a sum of products
of polynomial and exponential signals, then the corresponding
Hankel matrix TDEy 1 (x) is low rank. This property can be
summarized in Proposition 1.

Proposition 1. Consider a polynomial p.(t) = Z(?;‘O cqt?
of degree Q, with ¢, € R and a signal x of form
x(t) YR pe(t)2tsin(wyt), where z.,w,. € R. Then,

rank(TDEyw,(x)) = min(W, 2R+ Y2, Q,).

As TDEyw s(-) is a submatrix of TDEy1(-) with ¢ > 1,
rank(TDEw 5(-)) < rank(TDEw 1(-)) YW,§ and hence its
rank is upper bounded by 2R + Zle Q. In other words,
the TDE in (7) further enhances low rank representation for
polynomial and exponential signals.
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Fig. 1: Main steps of HO-MSSA for multichannel biomedical signal analysis.

Moreover, TDE has a connection to the short time Fourier
transform (STFT) as follows

X = Fyuwdiag(w) TDEw s(x), (8)

where F nyw contains the first W columns of the Fourier
transform matrix and w denotes the window in STFT. Since
F nw is full column rank, rank(TDEys(x)) = rank(X).
In [24], Usevich et al. presented several finite signals with low-
rank STFT. Therefore, apart from polynomial and exponential
signals, TDE also promotes low-rank approximation to several
other types of data, such as convoluted signals. It is also worth
noting that many signals obtained from our human body show
periodic, quasiperiodic, or cyclostationary behavior, reflecting
the cyclical patterns inherent in physiological processes [2].
Therefore, TDE can offer a valuable method to obtain a low-
rank representation of biomedical signals. Refer to Fig. 5 for
an illustration of an ECG signal and its low-rank TDE matrix.

Step 2. (Temsor SVD Decomposition): In this step, we
construct the trajectory tensor X € RW*UI+1)XM by stacking
TDE matrices of M observations {x,,}}_, as follows

X = TDEW’(;(Xl) TDEw)(;(Xg) s TDEW’(;(XM).
Subsequently, taking the t-SVD of X results in:

XY s eyt

= Dia UG k) o S(h k) e Wk, 9)T = Tisy X, (10)
where K < min(W,I + 1) is the tubal rank of X; U «
RW*EXM apnd Y e REXUHDXM are orthogonal tensors; and
S € REXEXM 4¢ ap f-diagonal tensor; and tubal rank-1
tensors {X}1 are regarded as elementary tensors in this
application, see Fig. 2 for an illustration. Expression (10) is
regarded as the truncated version of t-SVD. The value of
K is identified as the number of non-zero tubes of S, i.e.,
K =Y%,1[S(k,k,:) + 0] where 1 is an indicator function.
Here, we can apply Algorithm 1 to perform the tensor de-
composition (10) effectively.

Similar to SVD in basis SSA, t-SVD also offers the best
low-tubal-rank representation to trajectory tensors. In partic-
ular, among all tensors Y of tubal rank d < K, the tensor
Yy = ZZ=1 X provides the best approximation to X in
the sense that | X — Y|% is minimum [22, Theorem 4.3].
Note that, t-SVD factorizes the trajectory tensor X in the
Fourier domain rather than the time domain, as in basis SSA
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Fig. 2: Elementary tensor of tubal rank 1.

Algorithm 1: t-SVD [25]
Input: X
Output: U, S,V
Main Procedure:

X =fit(x,[],3

fori=1,...,[*1] do

[Ui,S:,Vi] = SVD(X(:,:,i),K)
U(:,:,1) = Ui, 8(:,1,4) = S, V(i,5,1) = Vi

end

for j=[2L4741,...,M do
Zi(:v:vj) = COIlj(UM_]'+2)
§(:7:7j) = Sm-j+2
V(:,:75) = conj(Var—j+2)

end _ _
U =iffs(U,[1,3), S =ifft(S,[],3), V =
End

ifft(V,[],3)

and other variants. Indeed, expression (8) reveals that the
Fourier transform X of the original trajectory matrix X can be
expressed as X = USVT where U = Fy,ydiag(w)U, and
U,S, and V are three factors of the SVD of X. It suggests
that the decomposition of trajectory matrices can be performed
in the Fourier domain, as outlined in Algorithm 1. Specifically,
when M =1 (univariate time series), t-SVD simplifies to the
classical SVD, thus making HO-MSSA equivalent to SSA.
Step 3. (Grouping): The aim of this step is to divide the
set of elementary tensors {X)}5, (e, {U(:k,:),S(k,k,:
), V(k,:,:) <)) into R disjoint clusters {/,}2, and then
form:
xX=y7C Cr=Tier, X (1D
Let s;, = vec(S(k, k,:)) e RM*L V. We exploit the following
observations: (i) the set of first elements {sj (1)}, sorts in
decreasing order, i.e., s1(1) > sa(1) > --- > sg (1), which
plays a similar role as singular values of the trajectory matrix
in basis SSA; (i) the remaining elements in s;(2:end) are

where
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symmetric in the sense that si(m) =sp(M -m+2), Ym > 1,
k =1,2,...,K; (iii) the value of si(m) with m # 1 can
be negative, unlike the singular values of trajectory matrices;
(iv) s; and s; tend to be “close” if they belong to the same
component (see Fig. 3 for an example).

Consequently, when M > 2, the set of {sk}f: , can effec-
tively serve as features to perform the grouping (11).°> Here,
we apply the spectral clustering method [26] to categorize K
vectors {s;}& | into R clusters. Specifically, this method uti-
lizes the spectrum of the similarity or (normalized) Laplacian
matrix of {s;}5, to reduce dimensionality before clustering
in lower dimensions via spectral embedding. In situations
where the number of clusters R is unknown, this method can
determine it by evaluating the eigengap of the (normalized)
Laplacian matrix. Noting that, other clustering methods in
machine learning can also perform this task.

Step 4. (Reconstruction): After extracting C, for r =
1,2,..., R, we reconstruct the corresponding time-series sig-
nals in a manner such that their TDE matrices closely approx-
imate the frontal slices of C,.. Below, we present an extended
version of (4), called block diagonal averaging, to recover the
underlying signal x from its TDE matrix, accommodating var-
ious window lengths W and step sizes in the range 1 <6 < W.
Refer to Fig. 4 for an illustration.

Let L = |W/d], js = [6(j —1) +1: 7] and x;j, = x(Js) €
R*1. We divide the TDE matrix of x in (7) into two parts

X1;5 X25 XJs
X§ X.25 X?& “en X(Jfl)‘s
TDEw,s(x) = | — | =] ° S N
B XLs X(L+1)s X(L+J-1)5
b, b, b;

(12)
where B has a small number of rows (i.e., W — L§ < ¢
rows). It is empty if W = LJ. Accordingly, in this step, we
employ X and b ; to reconstruct the time-series x because the
contribution of B to this recovery is negligible. In particular,

3When M = 1, HO-MSSA simplifies to basis SSA and {sj, } | represents
the singular values of the trajectory matrix. This spectrum also proves valuable
for (eigentriple) grouping, particularly when processing harmonic signals.

X1, = Xs(1s, 1
WQ R X lf( ) |
5.1 5.2) ... Xs(2s, : X5 = = | X5(25,1) + X5(15,2)
50 X352 .. Xi(35,)) | ey :
; ; ; Ra; = 5 [Xs(35,1) + Xs(25,2) + Xo(15,3)]
51 72) ... Xs(LsJ i
X5 1) Kbk ?) S(Ls, ) X

Fig. 4: Block Diagonal Averaging
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exploiting the block Hankel structure of X; in (12), we apply
the following block diagonal averaging for the recovery of x

x=[x], Xj X(r,-1y, Py]’, where (13)
1 n
72X§(j5,n—j+l) if1<n<L
n 4
1 L
%, = ZZlX(;(jg,n—j+1) ifL<n<J (14)
=

1 L
> Xs(js,n—j+1) otherwise.

L+J—nj=nﬂ,+1

Here, X represents any frontal slice of the tensor C,..

IV. HO-MSSA BASED FETAL ECG EXTRACTION FROM
MATERNAL ECG

In this section, we demonstrate the effectiveness of HO-
MSSA in extracting fetal electrocardiogram (fetal ECG) from
maternal ECG recordings. The dataset used for this task
contains five abdominal and three thoracic recordings acquired
from various regions of the mother’s body, each sampled at a
rate of 250 Hz.* Here, we focus on five abdominal recordings,
each consisting of 800 data samples only. Refer to Fig. 5(a)
for an illustration of an abdominal recording.

We set the window length W to 400, with a step-size ¢
of 1, resulting in a trajectory tensor X of size 400 x 401 x 5.
Figs. 5(b) and (c) show the TDE matrix and its corresponding
singular values for an ECG recording. We can see that the
spectrum exhibits rapid decay, with focusing on the first few
singular values. This property of the TDE matrix facilitates
a low-rank approximation of the ECG signal and hence the
trajectory tensor X.

4ECG dataset: https://ftp.esat.kuleuven.be/pub/SISTA/data/biomedical/
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We proceed by factorizing X using t-SVD. The tubal rank of
X is determined to be K = 92, representing to 92 elementary
tensor components. Subsequently, we utilize spectral clustering
to categorize these components into three main groups: fetal
ECG, maternal ECG, and noises. This clustering method is
implemented using normalized graph Laplacian with a Gaus-
sian similarity function defined as A(s;,s;) = exp(—|s; —
s;|3/(20?)), where o controls the width of the neighbor-
hoods, set to 1 for this experiment.6 Afterwards, time-series
signals are extracted from each ECG recording through block
diagonal averaging on the frontal slices of the corrresponding
reconstructed tensor. We also compare the performance of HO-
MSSA with the recently proposed tensor-based ECG extraction
method called TenSOFO in [27]. The experimental results are
illustrated in Fig. 6. Similar to TenSOFO, HO-MSSA can
separate fetal heartbeats from maternal heartbeats, with the
fetal heart rate consistently higher than that of the mother.
Note that, the primary objective of this section is to offer
an illustrative example of HO-MSSA for biomedical signal
analysis. A more comprehensive performance analysis and
comparison will be provided in our forthcoming journal.

V. CONCLUSIONS

In this study, we proposed a novel extension of singu-
lar spectrum analysis (SSA) called higher-order multivariate
SSA (HO-MSSA) for multichannel time-series analysis. Our
method employs a variant of time-delay embedding to trans-
form signals into trajectory tensors, enabling effective decom-
position using t-SVD. Through spectral clustering and block
diagonal averaging technique, we extracted interpretable time-
series signals. The demonstrated success in separating fetal
ECG signals from maternal ECG signals shows HO-MSSA’s
potential for multivariate and high-dimensional data analysis
that will be investigated thoroughly in future work.
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