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Abstract—In this work, we propose a new joint (coupled)
Tucker-2 decomposition method for semi-blind channel esti-
mation in a double-reconfigurable intelligent surface (D-RIS)-
assisted MIMO communications system. In the D-RIS-assisted
system, two RISs are considered; where the first RIS is placed
close to the transmitter, and the other is placed close to the
receiver for optimal performance. We demonstrate that the
received signals in flat fading D-RIS-assisted MIMO systems
can be effectively constructed using a 3-way Tucker-2 tensor
model. By utilizing the Tucker factorization on the Tucker-2
received signals model, all the three channels i.e., HT channel
between Tx-to-RIS 1, the HS channel between RIS 1-to-RIS
2, and the HR channel between RIS 2-to-Rx can be estimated
effectively. Furthermore, compared with a single RIS (S-RIS)
and the multiple RIS (M-RIS) case, we demonstrate how the
system’s performance is influenced by parameters related to
the transceiver, training overhead, and the number of elements
considered in the RISs. A numerical performance evaluation
depicts a fast convergence and underscores the improvement in
the spectral efficiency of the D-RIS system compared to S-RIS
and M-RIS systems.

Index Terms—D-RIS-assisted MIMO, joint Tucker-2 decom-
position, semi-blind channel estimation.

I. INTRODUCTION

The Fifth Generation (5G) and beyond wireless commu-
nication standards hold the potential to deliver improved
wireless broadband and extensive connectivity with extremely
low latency through advanced technology such as massive
multiple-input multiple-output (MIMO) and millimeter-wave
(mm-wave) communication systems. Nevertheless, these ad-
vancements come with significant power consumption and
path loss challenges in ensuring users a consistent quality
of service, particularly in challenging propagation environ-
ments [1]. In response to these limitations, potential and cost-
effective remedies like developing reconfigurable intelligent
surfaces (RISs) have been introduced [2]. The RIS is a
2D surface structure comprising a set of electrically tunable
reflecting antenna arrays that make dynamic adjustments to
their radiation patterns to improve the efficiency and capacity
of the communications system.

The majority of previous research proposed the use of a
single-RIS (S-RIS)-assisted system where the transmitter (Tx)
and the receiver (Rx) communicate through an S-RIS-aided
channel. Additionally, it has been demonstrated that optimal

performance gain is achieved when the RIS is positioned in
close proximity to the Tx/Rx [3]. On the other hand, some
applications, like satellite-to-indoor communications, may re-
quire multiple deployments of RIS. Multiple deployments of
RIS can be double RIS (D-RIS)-assisted where one RIS is
positioned close to Tx and the other close to the Rx (see Fig.
1a) [4], [5] or a situation in which all the RISs are positioned
at precise locations of the channel scatterers (see Fig. 1b)
named Multi-RIS (M-RIS)-assisted [6]. The performance of
the S-RIS, D-RIS, or M-RIS-aided system significantly relies
on the number of the array elements on the RIS, the deployed
position, and the quality of Channel State Information (CSI)
estimation. This becomes challenging, particularly in a D-
RIS-aided system where the channel contains three cascaded
channels compared to two in a S-RIS-aided system.

A plethora of recent references, such as [5], [7]–[9], have
focused on alternating least squares (ALS)-based channel
estimation for both S-RIS and D-RIS systems. The authors
in [7] proposed an ALS-based channel estimation for an S-
RIS system, and their algorithm relied on the parallel tensor
model of the received signal. Also, the authors in [8] consider
ALS-based in S-RIS under a quasi-static block fading channel
by controlling the training sequence overhead using a spatial
correlation. Furthermore, the authors in [5], [9] proposed an
ALS-based for D-RIS to exploit the 4-way tensor of the D-RIS
system using a low-complexity Khatri-Rao factorization in [9]
and using Tucker-2 tensor decomposition in [5]. Their method
achieved a remarkable performance with a minimum overhead
sequence. Also, the authors in [6] consider channel estimation
and joint beamforming design for both the S-RIS and M-
RIS systems, whereby all RISs were positioned in a precise
location of channel scatterers see Fig 1b. However, blind and
semi-blind channel estimation maintain the system’s spectral
efficiency [10] and have recently been proposed for RIS-aided
systems. In [11], authors consider S-RIS and proposed a blind
data recovery with the help of ALS using a constrained factor
tensor decomposition. In [12], a generalized Parallel factor
and Tucker tensor decomposition are proposed as a two-stage
closed-form semi-blind joint channel and symbol estimation
using Khatri-Rao and Kronecker factorization, respectively.
Also, the authors in [13] proposed a semi-blind channel
estimation approach for the S-RIS-aided channel, which helps



enhance the system’s data rate.
In this work, we develop a new joint (coupled) Tucker-2

factorization for a semi-blind channel estimation method in
the context of a D-RIS-assisted MIMO communication system.
We show that the received signals in flat-fading D-RIS-assisted
MIMO systems can be formulated as a joint Tucker-2 tensor
model, allowing for a joint coupled Tucker-2 decomposition.
By employing the coupled Tucker-2 factorization on the
Tucker-2 received signals model, effective estimation of all
three channels – Tx-to-RIS 1 (HT), the channel between
RIS 1-to-RIS 2 (HS), and the channel between RIS 2-to-Rx
(HR) can be achieved. Additionally, in comparison to both S-
RIS and M-RIS scenarios, we illustrate how various system
parameters, such as the number of Tx/Rx antennas, training
overhead, and the number of elements in the RISs, impact the
system’s performance. Furthermore, numerical performance
evaluation shows fast convergence and highlights enhance-
ments in spectral efficiency within the D-RIS system compared
to both S-RIS and M-RIS configurations.

The structure of this paper is as follows: Section II presents
two subsections: the system model and the tensor-based model.
The tensor-based model illustrates the Tucker model and
briefly revises the Tucker-2 decomposition of the received
signal. Section III details our proposed joint (coupled) Tucker-
2 model and semi-blind channel estimation algorithm based
on coupled Tucker-2 tensor decomposition. The numerical
evaluation is presented in Section VI.

Notation: A, (a, b, ...) and (a,b, ...) are the matrix,
the scalars, and column vectors, respectively. In addition,
AT,A∗,AH,A+,⊗, and ⊙ are the transpose, the com-
plex conjugate, the conjugate transpose (Hermitian), the
Moore–Penrose inverse, the Kronecker product, and the
Khatri-Rao product, respectively. diag{a} creates a diagonal
matrix A with elements of a positioned in its main diagonal.
vec{A} means create a vector by stacking columns of A
on top of each other and unvec{a} is the reversal of the
vec operator. A ×n B denotes the product of n-mode tensor
A ∈ CI1×I2×...,×IN with B ∈ CJ×In matrix. The mode-n
unfolding matrix of A is denoted as [A](n) and ∪n represents
the concatenation along the nth dimension. Also, the following
identities are utilized: vec{ABC} = (CT ⊗ A)vec{B};
vec{Adiag(λ)B} = (BT ⊙ A)λ; (AC) ⊙ (BD) = (A ⊗
B)(C⊙D), where all matrices possess compatible dimensions.

II. PROBLEM FORMULATION

A. System Model

In this work, we consider a MIMO communication systems
equipped with a D-RIS between Nt transmit antennas and
Nr receive antennas as shown in Fig. 1a. The RIS 1 has M1

reflecting elements and is placed near the Tx, hereas the RIS
2 has M2 reflecting elements and is placed near the Rx. It
is assumed that L symbol frames were transmitted, such that
L = I ·K, and there are no direct communications between
Tx-to-Rx, Tx-to-RIS 2, and RIS 1-to-Rx owing to the high
propagation pathloss phenomena.

Fig. 1. (a) D-RIS assisted, (b) multi-RIS MIMO communication system.

The received signal yi,k at the (i, k)-th subframe with i =
1, 2, ..., I and k = 1, 2, ...,K can be expressed as:

yi,k = HRΦiHSΨiHTxk + ni,k ∈ CNr×1, (1)

where xk ∈ CNt×1 is the transmitted signal; ni,k ∈ CNr×1

is the additive white Gaussian circularly symmetric complex-
valued noise with zero mean and variance σ2

n; HT ∈ CM1×Nt

is the channel between Tx to RIS 1; HR ∈ CNr×M2 is the
channel between RIS 2 to Rx; and HS ∈ CM2×M1 is the
channel between RIS 1 to RIS 2, respectively. Let Ψi =
diag(ψi) ∈ CM1×M1 with |[ψi]m1

| = 1/
√
M1 and Φi =

diag(ϕi) ∈ CM2×M2 with |[ϕi]m2 | = 1/
√
M2 be the i-th

diagonal reflection matrix of RIS 1 and RIS 2, respectively;
where ψi ∈ CM1×1 and ϕi ∈ CM2×1, respectively. From
(1), we stack the vectors {yi,k}Kk=1 into a matrix Yi =
[yi,1, ...,yi,K ] ∈ CNr×K and expressed as:

Yi = HRΦiHSΨiHTX+Ni, (2)

Zi
∆
= YiX

H = HRΦiHSΨiHT +NiX
H ∈ CNr×Nt , (3)

where X = [x1,x2...,xK ] ∈ CNt×K and it is assumed that
XXH = INt for K ≥ Nt (under the assumption that the pilot
matrix X is orthogonal). Our primary target in the following
section is to estimate the channels HT,HS, and HR.

B. Tensor-based Model

If we stack I matrices {Yi}Ii=1 and {Zi} into two third-
order tensors Y ∈ CNr×K×I (i.e., Y(:, :, i) = Yi ∈ CNr×K)
and Z ∈ CNr×Nt×I (i.e., Z(:, :, i) = Zi ∈ CNr×Nt ), then Y
and Z admit the following Tucker representations:

Z = G ×1 HR ×2 H
T
T , (4)

Y = G ×1 HR ×2 (X
THT

T ), (5)

where

G = [Φ1HSΨ1,∪3, ...,∪3,ΦIHSΨI ] ∈ CM2×M1×I . (6)

Accordingly, taking the Tucker-2 decomposition of Z can
result in HS, HR and HT as presented in [5] which is
expressed as follows;

{ĤR, ĤT, ĤS} = arg min
HR,HT,HS

∥∥∥Z − G ×1 HR ×2 H
T
T

∥∥∥2
F
, (7)

The above problem involves joint optimization, which is
nonconvex in nature and can be solved using an alternating



minimization method where one variable is solved at a time
while the others remain fixed. The individual channel estimate
can be represented as:

ĤR = arg min
HR

∥∥∥[Z](1) −HRFR(HT,HS)
∥∥∥2

F
, (8)

ĤT = arg min
HT

∥∥∥[Z](2) −HT
TFT(HR,HS)

∥∥∥2
F
, (9)

ĥS = arg min
hS

∥∥∥z(3) − FS(HT,HR)hS

∥∥∥2
2
, (10)

where FR(HT,HS) = [G](1)(II ⊗ HT
T )

T ∈ CM2×INt ;
FT(HR,HS) = [G](2)(II ⊗ HT

R)
T ∈ CM1×INr ;

FS(HT,HR) =
(
(HT

T ⊗HR)⊙ (Ψ⊙Φ)T
)
∈ CINrNt×M1M2 ;

ĥS = vec{ĤS} ∈ CM1M2 ; z(3) = vec{[Z](3)} ∈ CINtNr and
[Z](n), n ∈ {1, 2, 3} is the n-mode unfolding of Z which is
written as:

[Z](1) = HR[G](1)(II ⊗HT
T )

T + [N ](1) ∈ CNr×INt , (11)

[Z](2) = HT
T [G](2)(II ⊗HR)

T + [N ](2) ∈ CNt×INr , (12)

[Z](3) = [G](3)(HT
T ⊗HR)

T + [N ](3) ∈ CI×NtNr . (13)

However, for a unique solution of (8), (9) and (10) this requires
that FR and FT have a full column-rank such that INt ≥
M2 and INr ≥ M1; whereas FS has full row-rank implying
IM1M2 ≥ NrNt. Therefore, authors in [5] concluded that the
number of channel coefficients for S-RIS and D-RIS denoted
as HS-RIS and HD-RIS can be written as:

HS-RIS = NtM +NrM (14)

HD-RIS = NtM1 +M1M2 +NrM2. (15)

The work in [5] recasts (4) to the PARAFAC model in [9].

III. PROPOSED SEMI-BLIND CHANNEL ESTIMATION

This section presents our new proposed coupled Tucker-2
received signal model and semi-blind channel estimation algo-
rithm based on a new coupled Tucker-2 tensor decomposition.
Assume that we have X = [Xp Xd] ∈ CNt×(Kp+Kd) where
Xp ∈ CNt×Kp is the pilot matrix and Xd ∈ CNt×Kd is the
unknown matrix. From (5), we obtain

Yp = G ×1 HR ×2 (X
T
pH

T
T ) +N p ∈ CNr×Kp×I , (16)

Yd = G ×1 HR ×2 (X
T
dH

T
T ) +N d ∈ CNr×Kd×I . (17)

For short, let denote UTp
= XT

pH
T
T ∈ CKp×M1 , Pd = XT

dXp,
and UTd

= PdUTp
∈ CKd×M1 . Expressions (16) and (17)

can be recast into the following joint (coupled) Tucker-2
decomposition of Yp and Yd{

Yp = G ×1 HR ×2 UTp
+N p,

Yd = G ×1 HR ×2 UTd
+N d.

(18)

Here, G and HR represent the common core tensor and the
common loading factor, respectively. Two matrices UTp and
UTd

are the individual factors of Yp and Yd, respectively.

By performing the joint Tucker-2 decomposition (18), we
can obtain the matrices HR, UTp

, UTd
and common core G

directly. This can be reformulated as an optimization problem:

arg min
G,HR,UTp ,UTd

∥∥Yp − G ×1 HR ×2 UTp

∥∥2
F

+
∥∥Yd − G ×1 HR ×2 UTd

∥∥2
F
. (19)

To solve (19), we propose the following iterative procedure

H
(i)
R = arg min

HR

∥∥∥[Yp

]
(1)

−HR

[
G
](i−1)

(1)
(I⊗U

(i−1)
Tp

)⊤
∥∥∥2
F

+
∥∥∥[Yd

]
(1)

−HR

[
G
](i−1)

(1)
(IM2

⊗U
(i−1)
Td

)⊤
∥∥∥2
F
,

(20)

U
(i)
Tp

= arg min
UTp

∥∥∥[Yp

]
(2)

−UTp

[
G
](i−1)

(2)
(IK ⊗H

(i)
R )⊤

∥∥∥2
F
,

(21)

U
(i)
Td = arg min

UTd

∥∥∥[Yd

]
(2)

−UTd

[
G
](i−1)

(2)
(IK ⊗H

(i)
R )⊤

∥∥∥2
F
,

(22)

[G(i)](1) = arg min
G

∥∥∥[Yp

]
(1)

−H
(i)
R

[
G
]
(1)

(I⊗U
(i)
Tp
)⊤
∥∥∥2
F

+
∥∥∥[Yd

]
(1)

−H
(i)
R

[
G
]
(1)

(IM2
⊗U

(i)
Td
)⊤
∥∥∥2
F
.

(23)

Note that, we obtain the common core G(i) by reshaping the
matrix [G(i)](1) at each iteration. Their closed-form solutions
are provided in Algorithm 1. Subsequently, upon obtaining
ĤR, ÛTp , ÛTd

and Ĝ, we proceed to estimate ĤT = ÛT
Tp
XT

p

and ĤS ≈ Φ−1ĜΨ−1. Ultimately, the cascaded end-to-end
channel estimate can be expressed as:

Ĥe = ĤRΦĤSΨĤT ∈ CNr×Nt . (24)

Remarks: The individual channel estimates can be ex-
pressed in relation to the actual channels as: ĤR ≈ HR∆R,
ĤT ≈ ∆THT, HS ≈ ∆−1

R ĤS∆
−1
T , where ∆ is the diagonal

matrix containing the scaling ambiguities which normally dis-
appear in the end-to-end cascaded channel Ĥe = ĤRĤSĤT ∈
CNr×Nt because the reflection matrices Φ and Ψ are known at
the receiver side and the permutation ambiguities disappeared
[9]. Additionally, the proposed method presents an approach
to estimate the unknown data matrix Xd from UTd

and UTp .
Specifically, we first determine the matrix Pd = UTd

U+
Td

and
then simply estimate Xd = (PdX

+
p )

T.

IV. NUMERICAL EVALUATION

This section presents a performance assessment of the
proposed semi-blind coupled Turker-2 approach for a D-RIS-
aided compared to the model proposed in [6] based on spectral
efficiency which is defined as:

SE (bps/Hz) = log2

[
det

(
IP + SNR · ĤH

e Ĥe

)]
, (25)



Algorithm 1: Joint (Coupled) Tucker-2 Decomposition
Input: Yp, Yd, and a small regularized parameter ρ
Output: G,HR,UTp

, and UTd

Initialization:
G(0),H

(0)
R ,U

(0)
Tp
, and U

(0)
Td

are generated at random

Z
(0)
p = (I⊗U

(0)
Tp

)⊤; Z(0)
d = (I⊗U

(0)
Td

)⊤

Main Program:
For i = 1, 2, . . . do

// Estimate the common factor HR

W
(i)
p =

[
G(i−1)

]
(1)

Z
(i−1)
p

W
(i)
d =

[
G(i−1)

]
(1)

Z
(i−1)
d

Y(i) =
[
Yp

]
(1)

(W
(i)
p )⊤ +

[
Yd

]
(1)

(W
(i)
d )⊤

H
(i)
R = Y(i)

(
W

(i)
p (W

(i)
p )⊤ +W

(i)
d (W

(i)
d )⊤ + ρIM2

)−1

// Estimate two factors UTp and UTd

Q(i) =
[
G(i−1)

]
(2)

(IK ⊗H
(i)
R )⊤

U
(i)
Tp

=
[
Yp

]
(2)

(Q(i))+

U
(i)
Td

=
[
Yd

]
(2)

(Q(i))+

// Estimate the common core G
Z

(i)
p = (I⊗U

(i)
Tp
)⊤

Z
(i)
d = (I⊗U

(i)
Td
)⊤

Z(i) = (H
(i)
R )+

([
Yp

]
(1)

(Z
(i)
p )⊤ +

[
Yd

]
(1)

(Z
(i)
d )⊤

)[
G(i)

]
(1)

= Z(i)
(
Z

(i)
p (Z

(i)
p )⊤ + Z

(i)
d (Z

(i)
d )⊤ + ρI

)−1

End For

where P is the number of RIS considered in the system; Ĥe

is the cascaded end-to-end channel estimate. The channel ma-
trices HR,HS, and HT are generated randomly and assumed
to be Gaussian independent and identically distributed (i.i.d.)
with zero mean and unit variance. A finite alphabet sequences
are considered as transmitted information. The Signal-to-Noise
Ratio (SNR) is defined as: SNR = E{∥Z−N ∥2F}/E{∥N ∥2F }.
The reflection matrices Ψ ∈ CI1×M1 and Φ ∈ CI2×M2 are
updated by random selection of the I1 and I2 rows of the
normalized M1 and M2-DFT matrices, such that I1 ≤ M1

and I2 ≤M2 as in [5].
Figures 2 and 3 illustrate the performance evaluation of the

proposed joint Tucker-2 decomposition of Yp and Yd using
the following metric:

Error(Zgt,Zes) = ∥Zgt −Zes∥F/∥Zgt∥F , (26)

where Zgt and Zes are ground truth and estimate, respec-
tively. The convergence of the algorithm is decided based on
the threshold δ (i.e., Error(i) − Error(i − 1) ≤ δ). The setup
considered in this experiment consists of I = 40 training
overhead; Nr = 4, Nt = 2, M1 = 30, M2 = 10 and δ = 10−2.
The legends of Fig. 2 and Fig. 3 depict the common core G;
individual factor of Yp and individual factor of Yd. As can
be observed from Fig. 2, the proposed algorithm performs
very well and effectively in the presence of noise. Moreover,

in terms of convergence, as depicted in Fig. 3, the proposed
algorithm attains a steady state in almost two iterations.
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Fig. 2. Error versus SNR.
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Figure 4 shows the results of the proposed joint Tucker-2
approach for D-RIS in terms of the normalized mean square
error (NMSE) of the effective channels defined as NMSE =
E{∥He − Ĥe∥2F}/E{∥He∥2F }. In this experiment, the setup
consists of I = 20 training overhead, Nr = 4, Nt = 2, and
different elements distributions for M1 and M2 in the RIS 1
and RIS 2 in D-RIS as indicated in the legend of the Fig. 4.
We can observe a significant NMSE performance improvement
when M1 =M2 = 20 compared to when M1 = 10,M2 = 30.
This indicates that excellent performance can be achieved with
careful distribution of elements between RIS 1 and RIS 2 of
the D-RIS system.

As far as the spectral efficiency is concerned, Fig. 5 presents
the performance of the proposed joint Tucker-2 semi-blind
approach for D-RIS compared to the work presented in [6] for
S-RIS and M-RIS systems, whereby all RISs were positioned



in same scenario as reported in [6]. In this experiment, I = 20
training overhead is used for all cases. Furthermore, the
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Fig. 4. NMSE versus SNR

number of S-RIS elements, M , is considered to be distributed
between RIS 1 and RIS 2 in both the D-RIS and M-RIS
scenarios, i.e., M = M1 + M2. As an example, assume
that M = 40 elements, then from (14) and (15), S-RIS has
channel coefficient HS-RIS = 240, whereas D-RIS and M-RIS
have channel coefficients HD-RIS = 520 with M1 = M2 =
M/2 = 20 elements. This shows that the D-RIS and M-
RIS systems have more channel coefficients than the S-RIS
system. Moreover, as highlighted in [5], when Nr ≈ Nt and
HD-RIS > HS-RIS, the S-RIS requires less training overhead.
However, with less training overhead (in this case, I = 20), we
can observe that the proposed semi-blind algorithm displays
a better SE of about 35.9 bps/Hz than S-RIS and M-RIS
scenarios with a SE of 16 bps/Hz and 25 bps/Hz, respectively,
for an SNR= 30 dB. Also, the performance of our algorithm
improves to SE 37 bps/Hz with an increase in Nr (see Fig.
5). Nevertheless, considering M1 = 10, and M2 = 30, the D-
RIS channel number of coefficients decreases (HD-RIS = 440),
which affects our algorithm’s performance but still achieves SE
of 30 bps/Hz better than its counterpart (see Fig. 5). In Fig.
6, we can see that an increase in training overhead (I = 40)
has no significant impact on S-RIS performance compared to
M-RIS and D-RIS, which shows a remarkable performance
improvement.

V. CONCLUSION

This paper considers D-RIS-aided MIMO systems and
proposes a new semi-blind channel estimation based on a
joint (coupled) Tucker-2 tensor decomposition approach. We
demonstrated that our proposed algorithm performs better in
the presence of noise and converges in a few iterations. More-
over, we demonstrated that a perfect end-to-end channel can
be estimated with a small training overhead, which results in
improved spectral efficiency of a D-RIS system in comparison
with S-RIS and M-RIS scenarios.
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