
Signal Processing 216 (2024) 109297

A
0

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Short communication

A novel recursive least-squares adaptive method for streaming tensor-train
decomposition with incomplete observations
Thanh Trung Le a,b, Karim Abed-Meraim a,c, Nguyen Linh Trung b,∗, Adel Hafiane a

a University of Orleans, INSA-CVL, PRISME, France
b Vietnam National University, Hanoi, VNU-UET, Viet Nam
c Academic Institute of France, France

A R T I C L E I N F O

Keywords:
Tensor-train
Tensor decomposition
Adaptive algorithms
Online algorithms
Streaming data
Missing data

A B S T R A C T

Tensor tracking which is referred to as online (adaptive) decomposition of streaming tensors has recently
gained much attention in the signal processing community due to the fact that many modern applications
generate a huge number of multidimensional data streams over time. In this paper, we propose an effective
tensor tracking method via the tensor-train format for decomposing high-order incomplete streaming tensors.
On the arrival of new data, the proposed algorithm minimizes a weighted least-squares objective function
accounting for both missing values and time-variation constraints on the underlying tensor-train cores, thanks
to the recursive least-squares filtering technique and the block coordinate descent framework. Our algorithm
is fully capable of tensor tracking from noisy, incomplete, and high-dimensional observations in both static
and time-varying environments. Its tracking ability is validated with several experiments on both synthetic
and real data.
1. Introduction

Tensor-train (TT) decomposition, which is one form of tensor de-
composition, has become a powerful processing tool for multi-
dimensional and large-scale data analysis [1]. Under the TT format, we
can factorize a high-order tensor into a sequence of 3rd-order tensors.
TT decomposition offers several advantages compared to the two stan-
dard CP/PARAFAC decomposition, Tucker decomposition, and their
combination called block-term decomposition (BTD). For example, we
can represent any high-order tensor under TT decomposition. It is due
to the fact that the existence of the best low-rank tensor approximation
with fixed rank parameter is always guaranteed [2,3]. It is also indi-
cated in [4] that the TT-rank coincides with the separation rank of the
underlying tensor.1 In other words, the TT-rank is a uniquely defined
quantity and it can be effectively determined in a stable way. Moreover,
TT decomposition provides a memory-saving representation for high-
order tensors and can break the curse of dimensionality which limits
the order of the tensors to be analyzed [2,5]. Accordingly, TT decompo-
sition is expected to be capable of handling big tensors efficiently and
effectively. We refer the readers to [1] for a comprehensive survey on
basic properties, algorithms, and applications of the TT decomposition.

In recent years, the demand for big data stream analysis has been
increasing rapidly [6]. In most modern online applications, data acqui-
sition is a time-varying process where data are sequentially acquired

∗ Corresponding author.
E-mail address: linhtrung@vnu.edu.vn (N.L. Trung).

1 Denote by 𝑠 the rank of the 𝑛th unfolding matrix of  of order 𝑁 . The vector 𝐬 = [𝑠 , 𝑠 ,… , 𝑠 ] is called the separation rank of  .

at a large scale with many attributes over time. This leads to several
issues for tensor decomposition in general and TT decomposition in
particular: (i) size of the tensor is growing linearly with time, (ii) time
variation in nonstationary environments where the underlying process
generating the tensor can change over time, and (iii) uncertainties
(e.g., imprecise, noisy, and misleading entries) emanate during data
collection, to name a few. In parallel, missing data are ubiquitous in
multi-dimensional and large-scale data analysis where collecting all
data attributes at a time is either too expensive or even impossible
due to corruption [7]. Accordingly, it is of great interest to develop
adaptive/online/streaming tensor decomposition or tensor tracking al-
gorithms which are capable of handling these issues. In spite of several
successes in batch settings, TT decomposition has not gained the same
popularity in online settings as CP and Tucker decompositions, see [8]
for a good review on tensor tracking algorithms. Particularly, most
of the existing TT methods are operating in batch-mode and become
inefficient for streaming applications.

Related Works: There exist few TT methods related to adaptive
tensor decomposition in the literature. In [9–11], Lubich et al. intro-
duced some dynamical tensor approximation methods under TT for-
mat for factorizing time-varying tensors, thanks to the Dirac–Frenkel–
McLachlan variational principle. However, the dynamical tensors of
interest are of fixed size, and hence, their methods indeed belong
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to the class of batch TT algorithms. In [12], Liu et al. proposed an
incremental TT method called iTTD for decomposing high-order tensors
of which one dimension grows with time. iTTD factorizes new streams
as individual tensors into TT-cores and then appends the estimated
cores to old estimates from past observations. In [13], Wang et al. also
developed an incremental TT method for factorizing tensors derived
from industrial IoT data streams, namely AITT. By exploiting a relation-
ship between the directly reshaped matrix and integration of unfolding
matrices, AITT can estimate effectively the underlying TT-cores with
low cost. Nevertheless, it is worth noting that the framework of both
iTTD and AITT is not really online streaming learning, but incremental
batch learning. Recently, we have introduced an adaptive TT method
called TT-FOA capable of tracking the low-rank components of high-
order tensors in online settings [14]. Its design is useful for scenarios
where a single data sample is acquired at a time. Despite advantages
in some respects, all the existing dynamical/incremental/adaptive TT
methods above are not suitable for handling streaming tensors with
missing values. In parallel, many tensor completion algorithms have
been proposed in the literature [15]. They are, however, either batch
tensor methods and not useful for stream processing or deployed under
other tensor formats (e.g., CP, Tucker, BTD, and t-SVD).

Apart from the mentioned favorable characteristics such as rank
determination, stable computation, and memory-saving representa-
tion, TT and its variants (e.g., block TT [16], cyclic TT or tensor
chain/ring [17], fully-connected tensor network [18], and tensor wheel
[19]) offer more flexible low-rank representations for streaming tensors
compared to classical tensor formats. TT can be easily transformed into
CP, Tucker, and BTD formats [1, Sec. 4.3]. For instance, TT simplifies to
CP when the 3rd-order TT-cores have diagonal lateral slices. By apply-
ing appropriate regularization and constraints on core tensors, adaptive
TT methods can efficiently factorize streaming tensors, benefiting from
the advantageous properties of CP, Tucker, and BTD. Another appealing
feature of the streaming TT model is that it admits several mathe-
matical and graphical representations that can be interchanged for
different applications. Through tensor network transformations like
contractions, reshaping, and decompositions of core tensors, TT can
be converted into a tensor ring and vice versa [1, Sec. 2.2]. In the
tensor ring representation, core tensors are interconnected circularly
and treated equivalently [17]. Consequently, adaptive TT methods can
effectively handle streaming tensors with any time-varying mode or
dimension, unlike classical adaptive tensor decompositions designed
for a specific streaming mode. Additionally, TT exhibits adaptability to
diverse signal processing models, such as multidimensional harmonic
retrieval, canonical correlation analysis and tracking extreme singular
values/vectors in SVD [20]. This flexibility of TT in modeling high-
dimensional data is therefore noteworthy. Furthermore, TT and its
adaptive variant provide natural sparse and distributed representa-
tions for large tensors, effectively addressing both established and
emerging methodologies for tensor-based representations and opti-
mization [1,21]. With the increasing need to handle large-scale and
high-speed streaming data, including tensors, this feature becomes
highly beneficial [8].

Main Contribution: In this paper, we propose a novel adaptive
algorithm called ATT (which stands for Adaptive Tensor-T rain) for
decomposing high-order incomplete streaming tensors with time un-
der the tensor-train format. By utilizing the recursive least-squares
method in adaptive filtering, ATT minimizes effectively a weighted
least-squares objective function accounting for both missing values and
time-variation constraints on the underlying tensor-train cores. The
proposed ATT algorithm is scalable, effective, and capable of estimating
low-rank components of streaming tensors from noisy and incomplete
observations as well as tracking their time variation in nonstationary
environments. To the best of our knowledge, ATT is the first of its kind
which is capable of dealing with time-dependent streaming tensors with
2

missing values.
Compared to the state-of-the-art TT methods, ATT presents a novel
optimization approach with several appealing features. Unlike classical
batch TT decomposition methods (e.g., TT-SVD [2] and TT-HSVD [22]),
which rely on computationally expensive SVD decompositions of un-
folding matrices, ATT takes a different route. Specifically, ATT employs
a recursive least-squares filtering technique that involves performing
only simple matrix–vector multiplications and inverse operations on
small-sized matrices (their size is equal to the TT rank), thereby re-
sulting in significantly reduced computational complexity. One key
advantage of ATT is its ability to update each TT-core independently,
without interfering with the others. This characteristic facilitates paral-
lel and distributed computing, making it highly advantageous for deal-
ing with large-scale and higher-order tensors. In comparison to existing
adaptive tensor decomposition methods, ATT leverages second-order
estimation instead of the commonly adopted first-order estimation in
several online tensor decomposition methods such as TT-FOA [14],
TeCPSGD [23], and OLCP [24]. Thanks to its efficient recursive proce-
dure, which eliminates the need for inverting the main Hessian matrix,
ATT achieves a computational complexity similar to that of first-order
estimation methods. This approach, coupled with a novel regularization
term on TT-cores, enables ATT to effectively and efficiently handle
missing observations and time-varying data in online settings. More-
over, ATT’s update rule can be designed to operate at the row-wise
level, offering extensive support for parallel and distributed processing.
This design choice leads to accelerated tracking, particularly in cases
of significant data corruption. For instance, ATT allows for skipping
the update of specific rows in the TT-core during updates, without
affecting others. This not only enhances computational efficiency but
also contributes to ATT’s remarkable effectiveness in handling missing
data.

Notations. Lowercase, boldface lowercase, boldface capital, and bold
calligraphic letters are used to denote scalars (e.g., 𝑎), vectors (e.g., 𝐚),

atrices (e.g., 𝐀), and tensors (e.g., ), respectively. We use 𝐀−1, 𝐀⊤,
and 𝐀−⊤ to represent the inverse of 𝐀, the transpose of 𝐀 and of 𝐀−1,
respectively. In addition, 𝐀(𝑛) denotes the mode-𝑛 unfolding matrix of

. Symbols ‘‘⊛’’ and ⊗ are used to denote the Hadamard and Kronecker
roduct. We denote by ‘‘×1

𝑛’’ and ‘‘⊞𝑛’’ the tensor-train contraction
nd tensor concatenation along the 𝑛th dimension respectively, and by
𝚎𝚜𝚑𝚊𝚙𝚎(.) the tensor reshaping operator. Also, ‖.‖𝐹 and ‖.‖2 denote the
robenius and the 𝓁2 norms.

. Problem statement

In this work, we consider the streaming tensor-train decomposition
f an 𝑁th order incomplete streaming tensor  𝑡 ∈ R𝐼1×𝐼2×⋯×𝐼𝑁−1×𝐼 𝑡𝑁

ixing all but the last time (temporal) dimension 𝐼 𝑡𝑁 . Particularly,  𝑡
s derived from appending the incoming stream  𝑡 ∈ R𝐼1×𝐼2×⋯×𝐼𝑁−1×𝑊

with 𝑊 ≥ 1) to the last observation  𝑡−1 along the time dimension,
.e.,  𝑡 =  𝑡−1 ⊞𝑁  𝑡 with 𝐼 𝑡𝑁 = 𝐼 𝑡−1𝑁 + 𝑊 . We suppose that  𝑡 is
enerated under the following model:

𝑡 =  𝑡 ⊛
(

𝑡 + 𝑡
)

. (1)

Here, the binary mask  𝑡 indicates whether the (𝑖1, 𝑖2,… , 𝑖𝑁 )-th entry
of  𝑡 is missing or observed (i.e., 𝑝𝑖1𝑖2…𝑖𝑁 = 0 if 𝑦𝑖1𝑖2…𝑖𝑁 is missing and
𝑝𝑖1𝑖2…𝑖𝑁 = 1 otherwise),  𝑡 is a Gaussian noise tensor, and both tensors
are of the same size with  𝑡. The low-rank component 𝑡 has the form

𝑡 = (1)
𝑡 ×1

2 
(2)
𝑡 ×1

3 …×1
𝑁 𝐆(𝑁)

𝑡 , (2)

where (𝑛)
𝑡 ∈ R𝑟𝑛−1×𝐼𝑛×𝑟𝑛 for 𝑛 = 1, 2,… , 𝑁 with 𝑟0 = 𝑟𝑁 = 1

is the 𝑛th TT-core (the first and last TT-cores are indeed matrices);
[𝑟1, 𝑟2,… , 𝑟𝑁−1] is the TT-rank; and 𝐆(𝑁)

𝑡 ∈ R𝑟𝑁−1×𝑊 contains the last 𝑊
columns of the temporal TT-core (𝑁)

𝑡 , i.e., (𝑁)
𝑡 =

[

(𝑁)
𝑡−1 𝐆(𝑁)

𝑡
]

, please
see Fig. 1 for an illustration.

In online setting, retaking the batch TT methods to factorize the
underlying tensor  becomes inefficient due to inherent time-variation
𝑡
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Fig. 1. Streaming tensor-train decomposition of the streaming tensor  𝑡 ∈ R𝐼1×⋯×𝐼𝑁−1×𝐼 𝑡𝑁 .
Fig. 2. Performance comparison between two versions of ATT on an incomplete streaming tensor of size 10 × 15 × 20 × 150 and rank 𝑟1 = 𝑟2 = 𝑟3 = 5 with the noise level
𝜎𝑛 = 10−3.
and non-stationarity of data streams as well as their high complexity
in both computation and storage cost. Therefore, we aim to develop
a low cost and effective tracker to estimate the TT-cores of  𝑡 in
time. Specifically, we propose to minimize the following exponentially
weighted least-squares objective function:

{

(𝑛)
𝑡

}𝑁
𝑛=1 = argmin

{(𝑛)}𝑁𝑛=1

[ 𝑡
∑

𝜏=1
𝛽𝑡−𝜏‖‖

‖

 𝜏 ⊛
(

 𝜏 − (1) × 1
2 …× 1

𝑁−1
(𝑁−1) × 1

𝑁𝐆(𝑁)
𝜏

)

‖

‖

‖

2

𝐹

+ 𝜌
𝑁−1
∑

𝑛=1

‖

‖

‖

(𝑛) − (𝑛)
𝑡−1

‖

‖

‖

2

𝐹

]

, (3)

where 𝛽 ∈ (0, 1] is a forgetting factor aimed at reducing the effect
of distant observations as well as facilitating the tracking process in
dynamic environments; and 𝜌 is a regularization parameter for control-
ling the time variation of TT-cores between two consecutive instances.
{(𝑛)

𝑡−1}
𝑁−1
𝑛=1 represent previous estimates of {(𝑛)

𝑡 }𝑁−1
𝑛=1 and they serve as

prior information for the optimization problem (3). To support our
deployment in Section 3, we make two mild assumptions on the data
model: TT-cores {(𝑛)

𝑡 }𝑁−1
𝑛=1 may either be static or vary slowly with time,

i.e., (𝑛)
𝑡 ≃ (𝑛)

𝑡−1; and TT-rank is supposed to be known.

3. Proposed method

In this section, we propose an adaptive method called ATT for
adaptive tensor-train decomposition with missing data. Thanks to the
block-coordinate descent (BCD) framework, we particularly decom-
pose (3) into two main stages: first, update the temporal (𝑁)

𝑡 given
old estimations

{

(𝑛)
𝑡−1

}𝑁−1
𝑛=1 ; and second, estimate the non-temporal (𝑛)

𝑡
given (𝑁)

𝑡 and remaining TT-cores, for 𝑛 = 1, 2,… , 𝑁−1. In stage 1, we
apply the well-known regularized least-squares method for estimating
(𝑁)
𝑡 . An elegant recursive least-squares (RLS) adaptive filter is specif-

ically developed to update the non-temporal TT-cores {(𝑛)}𝑁−1 in an
3

𝑡 𝑛=1
effective way. Main steps of the proposed ATT method are summarized
in Algorithm 1.

3.1. Estimation of the temporal TT-core (𝑁)
𝑡

On the arrival of  𝑡, we obtain 𝐆(𝑁)
𝑡 from

𝐆(𝑁)
𝑡 = argmin

𝐆(𝑁)

‖

‖

‖

 𝑡 ⊛
(

 𝑡 −𝑡−1 ×1
𝑁 𝐆(𝑁)

)

‖

‖

‖

2

𝐹
+ 𝜆‖‖

‖

𝐆(𝑁)‖
‖

‖

2

𝐹
, (4)

where 𝑡−1 = (1)
𝑡−1 ×1

2 (2)
𝑡−1 ×1

3 … ×1
𝑁−1 (𝑁−1)

𝑡−1 and 𝜆 > 0 is a small
regularized parameter. Here, the first term of (4) is aimed at minimizing
the residual error between observation and estimation for 𝑡th temporal
slice, while the introduction of 𝜆‖𝐆(𝑁)

‖

2
𝐹 is for avoiding the ill-posed

computation in practice. Particularly, we can rewrite (4) as follows

𝐆(𝑁)
𝑡 = argmin

𝐆(𝑁)

‖

‖

‖

𝐏𝑡 ⊛
(

𝐘𝑡 −𝐇𝑡−1𝐆(𝑁)
)

‖

‖

‖

2

2
+ 𝜆‖‖

‖

𝐆(𝑁)‖
‖

‖

2

𝐹
, (5)

where 𝐘𝑡,𝐏𝑡 ∈ R𝐼1…𝐼𝑁−1×𝑊 , and 𝐇𝑡−1 ∈ R𝐼1…𝐼𝑁−1×𝑟𝑁−1 are the unfolding
matrices of  𝑡,  𝑡 and 𝑡−1, respectively. Furthermore, (5) can be
decomposed into 𝑊 subproblems w.r.t. 𝑊 columns of 𝐆(𝑁):

𝐆(𝑁)
𝑡 (∶, 𝑖) = argmin

𝐠𝑖

‖

‖

‖

𝐏𝑡,𝑖

(

𝐲𝑡,𝑖 −𝐇𝑡−1𝐠𝑖
)

‖

‖

‖

2

2
+ 𝜆‖‖

‖

𝐠𝑖
‖

‖

‖

2

2
. (6)

where 𝐲𝑡,𝑖 = 𝐘𝑡(∶, 𝑖) and 𝐏𝑡,𝑖 = 𝚍𝚒𝚊𝚐{𝐏𝑡(∶, 𝑖)}. The closed-form solution
of the regularized least-squares (6) can be given by

𝐆(𝑁)
𝑡 (∶, 𝑖) =

(

𝐇⊤
𝑡−1𝐏𝑡,𝑖𝐇𝑡−1 + 𝜆𝐈𝑟𝑁−1

)−1
𝐇⊤

𝑡−1𝐏𝑡,𝑖𝐲𝑡,𝑖. (7)

Then, the temporal TT-core (𝑁)
𝑡 is simply updated as

(𝑁)
𝑡 =

[

(𝑁)
𝑡−1 𝐆(𝑁)

𝑡
]

. Note that, we can re-update (𝑁)
𝑡 in the same way

above when other TT-cores {(𝑛)}𝑁−1 are updated.
𝑡 𝑛=1
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Algorithm 1: ATT - Adaptive Tensor-Train Decomposition
Input:

+ Streams { 𝑡 ⊛  𝑡}∞𝑡=1,  𝑡, 𝑡 ∈ R𝐼1×𝐼2×…×𝐼𝑁−1×𝑊 , TT-rank
𝐫TT = [𝑟1, 𝑟2,… , 𝑟𝑁−1],

+ Forgetting factor 0 < 𝛽 ≤ 1, regularized parameters 𝜌, 𝜆 > 0.
Output: TT-cores

{

(𝑛)
𝑡

}𝑁
𝑛=1.

1 Initialization:
2 + {(𝑛)

0 }𝑁−1
𝑛=1 are initialized at random,

3 + {𝐒(𝑛)0 }𝑁−1
𝑛=1 = 𝟎 and {𝜟(𝑛)

0 }𝑁−1
𝑛=1 = 𝟎.

4 for 𝑡 = 1, 2,… do
5 Stage 1: Estimate the temporal TT-core (𝑁)

𝑡
6 𝑡−1 = (1)

𝑡−1 ×
1
2 …×1

𝑁−1 
(𝑁−1)
𝑡−1

7 𝐇𝑡−1 = reshape
{

𝑡−1, [𝐼1𝐼2 … 𝐼𝑁−1, 𝑟𝑁−1]
}

8 for 𝑖 = 1, 2,… ,𝑊 do
9 𝐲𝑡,𝑖 = vec

{

 𝑡(∶,… , ∶, 𝑖)
}

10 𝐏𝑡,𝑖 = diag
{

 𝑡(∶,… , ∶, 𝑖)
}

11 𝐆(𝑁)
𝑡 (∶, 𝑖) =

(

𝐇⊤
𝑡−1𝐏𝑡,𝑖𝐇𝑡−1 + 𝜆𝐈𝑟𝑁−1

)−1𝐇⊤
𝑡−1𝐏𝑡,𝑖𝐲𝑡,𝑖

12 𝜹𝐲𝑡,𝑖 = 𝐏𝑡,𝑖
(

𝐲𝑡,𝑖 −𝐇𝑡−1𝐆
(𝑁)
𝑡 (∶, 𝑖)

)

13 𝜟 𝑡,𝑖 = reshape
{

𝜹𝐲𝑡,𝑖, [𝐼1, 𝐼2,… , 𝐼𝑁−1, 1]
}

14 end
15 (𝑁)

𝑡 =
[

(𝑁)
𝑡−1 𝐆(𝑁)

𝑡
]

16 𝜟 𝑡 = 𝜟 𝑡,1 ⊞𝑁 𝜟 𝑡,2 ⊞𝑁 ⋯⊞𝑁 𝜟 𝑡,𝑊

17 Stage 2: Estimate the non-temporal TT-cores
{

(𝑛)
𝑡

}𝑁−1
𝑛=1

18 for 𝑛 = 1, 2,… , 𝑁 − 1 do
19 (𝑛)

𝑡−1 = (1)
𝑡−1 ×

1
2 …×1

𝑛−1 
(𝑛−1)
𝑡−1

20 𝐀(𝑛)
𝑡−1 = reshape

{

(𝑛)
𝑡−1, [𝑟𝑛−1, 𝐼1𝐼2 … 𝐼𝑛−1]

}

21 (𝑛)
𝑡 = (𝑛+1)

𝑡−1 ×1
𝑛+2 …(𝑁−1)

𝑡−1 ×1
𝑁 𝐆(𝑁)

𝑡

22 𝐁(𝑛)
𝑡 = reshape

{

(𝑛)
𝑡 , [𝑟𝑛, 𝐼𝑛+1 … 𝐼𝑁−1]

}

23 𝐖(𝑛)
𝑡 = 𝐁(𝑛)

𝑡 ⊗ 𝐀(𝑛)
𝑡−1

24 𝐒(𝑛)𝑡 = 𝛽𝐒(𝑛)𝑡−1 +𝐖(𝑛)
𝑡 (𝐖(𝑛)

𝑡 )⊤

25 𝜟𝐆(𝑛)
𝑡 =

(

(

𝐏(𝑛)
𝑡 ⊛𝜟𝐘(𝑛)

𝑡
)(

𝐖(𝑛)
𝑡
)⊤ +𝛽𝜌𝜟𝐆(𝑛)

𝑡−1

) (

𝐒(𝑛)𝑡 +𝜌𝐈𝑟𝑛−1𝑟𝑛
)−⊤

26 𝐆(𝑛)
𝑡 = 𝐆(𝑛)

𝑡−1 + 𝜟𝐆(𝑛)
𝑡

27 (𝑛)
𝑡 = reshape

{

𝐆(𝑛)
𝑡 , [𝑟𝑛−1, 𝐼𝑛, 𝑟𝑛]

}

28 end
29 Stage 3 (Optional): Re-estimate (𝑁)

𝑡 with updated
{

(𝑛)
𝑡

}𝑁−1
𝑛=1

as in Stage 1.
30 end

Fig. 3. Effect of the noise level 𝜎𝑛 on the tracking ability of ATT.

3.2. Estimation of the non-temporal TT-cores
{

(𝑛)
𝑡
}𝑁−1
𝑛=1

We update each (𝑛)
𝑡 by minimizing

(𝑛)
𝑡 = argmin

[ 𝑡
∑

𝛽𝑡−𝜏‖‖ 𝜏 ⊛
(

 𝜏 −(𝑛)
𝑡−1 ×

1
𝑛 

(𝑛) ×1
𝑛+1 

(𝑛)
𝜏

)

‖

‖

2
+ 𝜌‖‖(𝑛) − (𝑛)

𝑡−1
‖

‖

2
]

,

4

(𝑛) 𝜏=1
‖ ‖𝐹 ‖ ‖𝐹
Fig. 4. Effect of the time-varying factor 𝜖 on the tracking ability of ATT.

(8)

where (𝑛)
𝑡−1 = (1)

𝑡−1 ×1
2 (2)

𝑡−1 ×1
3 … ×1

𝑛−1 (𝑛−1)
𝑡−1 and

(𝑛)
𝜏 = (𝑛+1)

𝑡−1 ×1
𝑛+2 …×1

𝑁−1 
(𝑁−1)
𝑡−1 ×1

𝑁 𝐆(𝑁)
𝜏 . We further recast (8) as

𝐆(𝑛)
𝑡 = argmin

𝐆(𝑛)

[ 𝑡
∑

𝜏=1
𝛽𝑡−𝜏‖‖

‖

𝐏(𝑛)
𝜏 ⊛

(

𝐘(𝑛)
𝜏 −𝐆(𝑛)𝐖(𝑛)

𝜏

)

‖

‖

‖

2

𝐹
+ 𝜌‖‖

‖

𝐆(𝑛) −𝐆(𝑛)
𝑡−1

‖

‖

‖

2

𝐹

]

,

(9)

where 𝐆(𝑛)
𝑡 = 𝚛𝚎𝚜𝚑𝚊𝚙𝚎

{

(𝑛)
𝑡 , [𝐼𝑛, 𝑟𝑛−1𝑟𝑛]

}

; 𝐏(𝑛)
𝜏 and 𝐘(𝑛)

𝜏 are the mode-
𝑛 unfolding matrices of  𝜏 and 𝜏 , respectively; 𝐖(𝑛)

𝜏 = 𝐁(𝑛)
𝜏 ⊗

𝐀(𝑛)
𝑡−1 where 𝐀(𝑛)

𝑡−1 = 𝚛𝚎𝚜𝚑𝚊𝚙𝚎
{

(𝑛)
𝑡−1, [𝑟𝑛−1, 𝐼1 … 𝐼𝑛−1]

}

and 𝐁(𝑛)
𝜏

= 𝚛𝚎𝚜𝚑𝚊𝚙𝚎
{

(𝑛)
𝑡 , [𝑟𝑛, 𝐼𝑛+1 … 𝐼𝑁−1]

}

.
Similar to the update of 𝐆(𝑁)

𝑡 in the first stage, we can update
independently each row 𝐠(𝑛)𝑡,𝑚 of 𝐆(𝑛)

𝑡 (with 𝑚 = 1, 2,… , 𝐼𝑛) as follows:

𝐠(𝑛)𝑡,𝑚 = argmin
𝐠(𝑛)𝑚

[ 𝑡
∑

𝜏=1
𝛽𝑡−𝜏‖‖

‖

𝐏
(𝑛)
𝜏,𝑚

(

𝐲(𝑛)𝜏,𝑚 − 𝐠(𝑛)𝑚 𝐖(𝑛)
𝜏

)⊤
‖

‖

‖

2

2
+ 𝜌 ‖‖

‖

𝐠(𝑛)𝑚 − 𝐠(𝑛)𝑡−1,𝑚
‖

‖

‖

2

2

]

,

(10)

here 𝐲(𝑛)𝜏,𝑚 = 𝐘(𝑛)
𝜏 (𝑚, ∶) and 𝐏

(𝑛)
𝜏,𝑚 = 𝚍𝚒𝚊𝚐

{

𝐏(𝑛)
𝜏 (𝑚, ∶)

}

. Specifically, 𝐠(𝑛)𝑡,𝑚 can
be derived from setting the gradient of the function in (10) to zero:

(

𝜌𝐈𝑟𝑛−1𝑟𝑛 +
𝑡

∑

𝜏=1
𝛽𝑡−𝜏𝐖(𝑛)

𝜏 𝐏
(𝑛)
𝜏,𝑚

(

𝐖(𝑛)
𝜏

)⊤
)

(

𝐠(𝑛)𝑚

)⊤ = 𝜌
(

𝐠(𝑛)𝑡−1,𝑚

)⊤ +
𝑡

∑

𝜏=1
𝛽𝑡−𝜏𝐖(𝑛)

𝜏 𝐏
(𝑛)
𝜏,𝑚

(

𝐲(𝑛)𝜏,𝑚

)⊤.

(11)

The closed-form solution of (11) is then given by

𝐠(𝑛)𝑡,𝑚 =
[

(

𝐒(𝑛)𝑡,𝑚 + 𝜌𝐈𝑟𝑛−1𝑟𝑛
)−1(𝐝(𝑛)𝑡,𝑚 + 𝜌

(

𝐠(𝑛)𝑡−1,𝑚
)⊤)

]⊤
, (12)

where 𝐒(𝑛)𝑡,𝑚 and 𝐝(𝑛)𝑡,𝑚 can be recursively updated as 𝐒(𝑛)𝑡,𝑚 = 𝛽𝐒(𝑛)𝑡−1,𝑚 +

𝐖(𝑛)
𝑡 𝐏

(𝑛)
𝑡,𝑚

(

𝐖(𝑛)
𝑡
)⊤ and 𝐝(𝑛)𝑡,𝑚 = 𝛽𝐝(𝑛)𝑡−1,𝑚 + 𝐖(𝑛)

𝑡 𝐏
(𝑛)
𝑡,𝑚

(

𝐲(𝑛)𝑡,𝑚
)⊤. Here, the two

auxiliary variables, 𝐒(𝑛)𝑡,𝑚 and 𝐝(𝑛)𝑡,𝑚, represent two weighted summations of
roducts

{

𝐖(𝑛)
𝜏 𝐏

(𝑛)
𝜏,𝑚

(

𝐖(𝑛)
𝜏
)⊤}𝑡

𝜏=1 and
{

𝐖(𝑛)
𝜏 𝐏

(𝑛)
𝜏,𝑚

(

𝐲(𝑛)𝜏,𝑚
)⊤}𝑡

𝜏=1, respectively.
t time 𝑡, each matrix 𝐖(𝑛)

𝜏 is constructed using the most recent
stimates of TT-cores {(𝑛)

𝑡−1}
𝑁−1
𝑛=1 instead of {(𝑛)

𝜏 }𝑁−1
𝑛=1 as in the classical

ecursive least-squares (RLS) method. This serves as an approximation
ntended to save computations by avoiding the retrieval of old infor-
ation of TT-cores at distant lags. Moreover, this approach enables an

legant transformation of the closed-form solution (12) into a recursive
ne. To be specific, we can represent (12) as follows

𝐠(𝑛)𝑡,𝑚
)⊤ =

(

𝐒(𝑛)𝑡,𝑚 + 𝜌𝐈𝑟𝑛−1𝑟𝑛
)−1(

𝛽𝐝(𝑛)𝑡−1,𝑚 +𝐖(𝑛)
𝑡 𝐏

(𝑛)
𝑡,𝑚

(

𝐱(𝑛)𝑡,𝑚
)⊤ + 𝜌

(

𝐠(𝑛)𝑡−1,𝑚
)⊤

)

=
(

𝐒(𝑛)𝑡,𝑚 + 𝜌𝐈𝑟 𝑟

)−1
[

𝛽
(

(

𝐒(𝑛) + 𝜌𝐈𝑟 𝑟
)(

𝐠(𝑛)
)⊤ − 𝜌

(

𝐠(𝑛)
)⊤

)

𝑛−1 𝑛 𝑡−1,𝑚 𝑛−1 𝑛 𝑡−1,𝑚 𝑡−2,𝑚
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+ 𝐖(𝑛)
𝑡 𝐏

(𝑛)
𝑡,𝑚

(

𝐱(𝑛)𝑡,𝑚
)⊤ + 𝜌

(

𝐠(𝑛)𝑡−1,𝑚
)⊤

]

=
(

𝐒(𝑛)𝑡,𝑚 + 𝜌𝐈𝑟𝑛−1𝑟𝑛
)−1

[

(

𝛽𝐒(𝑛)𝑡−1,𝑚 +𝐖(𝑛)
𝑡 𝐏

(𝑛)
𝑡,𝑚

(

𝐖(𝑛)
𝑡
)⊤ + 𝜌𝐈𝑟𝑛−1𝑟𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= 𝐒(𝑛)𝑡,𝑚+𝜌𝐈𝑟𝑛−1𝑟𝑛

)

(

𝐠(𝑛)𝑡−1,𝑚
)⊤

+ 𝛽𝜌
(

𝐠(𝑛)𝑡−1,𝑚 − 𝐠(𝑛)𝑡−2,𝑚

)⊤

+ 𝐖(𝑛)
𝑡 𝐏

(𝑛)
𝑡,𝑚

(

𝐱(𝑛)𝑡,𝑚 − 𝐠(𝑛)𝑡−1,𝑚𝐖
(𝑛)
𝑡

)⊤
]

=
(

𝐠(𝑛)𝑡−1,𝑚
)⊤ +

(

𝐒(𝑛)𝑡,𝑚 + 𝜌𝐈𝑟𝑛−1𝑟𝑛
)−1

[

𝛽𝜌
(

𝐠(𝑛)𝑡−1,𝑚 − 𝐠(𝑛)𝑡−2,𝑚

)⊤

+ 𝐖(𝑛)
𝑡 𝐏

(𝑛)
𝑡,𝑚

(

𝐱(𝑛)𝑡,𝑚 − 𝐠(𝑛)𝑡−1,𝑚𝐖
(𝑛)
𝑡

)⊤
]

. (13)

s a result, we derive the following recursive update

(𝑛)
𝑡,𝑚 = 𝐠(𝑛)𝑡−1,𝑚 +

(

𝜹𝐲(𝑛)𝑡,𝑚𝐏
(𝑛)
𝑡,𝑚

(

𝐖(𝑛)
𝑡
)⊤ + 𝛽𝜌𝜹𝐠(𝑛)𝑡−1,𝑚

)(

𝐒(𝑛)𝑡,𝑚 + 𝜌𝐈𝑟𝑛−1𝑟𝑛
)−⊤

, (14)

here 𝜹𝐲(𝑛)𝑡,𝑚 = 𝐏
(𝑛)
𝑡,𝑚

(

𝐲(𝑛)𝑡,𝑚 − 𝐠(𝑛)𝑡−1,𝑚𝐖
(𝑛)
𝑡
)⊤ and 𝜹𝐠(𝑛)𝑡−1,𝑚 = 𝐠(𝑛)𝑡−1,𝑚 − 𝐠(𝑛)𝑡−2,𝑚.

To enhance the computational efficiency, we can further simplify
(𝑛)
𝑡,𝑚 in (14) by excluding the diagonal matrix 𝐏

(𝑛)
𝑡,𝑚 as follows

(𝑛)
𝑡,𝑚 ≈ 𝛽𝐒(𝑛)𝑡,𝑚 +𝐖(𝑛)

𝑡
(

𝐖(𝑛)
𝑡
)⊤. (15)

ccordingly, we can set a shared auxiliary matrix 𝐒(𝑛)𝑡 for every row
𝐠(𝑛)𝑡,𝑚}

𝐼𝑛
𝑚=1 of 𝐆(𝑛)

𝑡 as

(𝑛)
𝑡 = 𝛽𝐒(𝑛)𝑡 +𝐖(𝑛)

𝑡
(

𝐖(𝑛)
𝑡
)⊤. (16)

hen, a recursive rule with a lower space complexity for updating the
hole matrix 𝐆(𝑛)

𝑡 at the same time is given by

(𝑛)
𝑡 = 𝐆(𝑛)

𝑡−1 +
(

(

𝐏(𝑛)
𝑡 ⊛𝜟𝐘(𝑛)

𝑡
)(

𝐖(𝑛)
𝑡
)⊤ +𝛽𝜌𝜟𝐆(𝑛)

𝑡−1

)(

𝐒(𝑛)𝑡 +𝜌𝐈𝑟𝑛−1𝑟𝑛
)−⊤

, (17)

here 𝜟𝐘(𝑛)
𝑡,𝑚 = 𝐘(𝑛)

𝑡 − 𝐆(𝑛)
𝑡−1𝐖

(𝑛)
𝑡 and 𝜟𝐆(𝑛)

𝑡−1 = 𝐆(𝑛)
𝑡−1 − 𝐆(𝑛)

𝑡−2. We then set
(𝑛)
𝑡 = 𝚛𝚎𝚜𝚑𝚊𝚙𝚎

{

𝐆(𝑛)
𝑡 , [𝑟𝑛−1, 𝐼𝑛, 𝑟𝑛]

}

.
By following the aforementioned framework, the proposed ATT

racker can be considered as an ‘‘indirect’’ recursive least-squares (RLS)
lgorithm. Instead of directly applying the classical RLS method to min-
mize the primary optimization (9), we leverage the insight that solving
he main objective function, which is represented by the exponentially
eighted least-squares function in (9), can be simplified to minimizing

ub-problems for each row of the TT core. These sub-problems involve
he use of recursive procedures and the implementation of approxima-
ions, resulting in a reduction in both computational complexity and
emory storage. The RLS solution of (9) is subsequently obtained by

onsolidating the recursive solutions acquired from these sub-problems.
he update rule (17) also reveals that ATT can support parallel and
istributed computing. It stems from the fact that all auxiliary ma-
rices 𝜟𝐘𝑡, 𝐖

(𝑛)
𝑡 , 𝜟𝐆(𝑛)

𝑡−1, and 𝐒(𝑛)𝑡 for updating (𝑛)
𝑡 are independent of

(𝑚)
𝑡 }𝑁−1

𝑚≠𝑛 . Therefore, we can assign 𝑁 − 1 individual computers to
pdate {(𝑛)

𝑡 }𝑁−1
𝑛=1 in parallel without disrupting the remaining TT-cores.

n other words, TT-cores can be updated simultaneously on the arrival
f new data at each time 𝑡.

.3. Performance analysis

For brevity, we assume that 𝐼𝑛 = 𝐼 and 𝑟𝑛 = 𝑟 for all 𝑛 =
, 2,… , 𝑁 − 1. At time 𝑡, ATT requires a cost of (𝑊 |𝛺𝑡|𝑟2) flops for
pdating 𝐆(𝑁)

𝑡 where |𝛺𝑡| denotes the number of observed data. Most
of operations for updating (𝑛)

𝑡 are matrix–matrix products except an
nverse operation of a 𝑟2 × 𝑟2 matrix. Thus, ATT requires an extra
ost of 

(

(𝑁 − 1)𝐼𝑁−1𝑟4
)

flops. The overall complexity of ATT is

(

𝑟2 max
{

(𝑁 − 1)𝐼𝑁−1𝑟2,𝑊 |𝛺𝑡|
})

flops. In term of memory storage,
ATT needs 

(

(𝑁−1)(2𝐼𝑟2+𝑟4)
)

words of memory for storing
{

(𝑛)
𝑡
}𝑁−1
𝑛=1 ,

{

𝜟(𝑛)}𝑁−1, and
{

𝐒(𝑛)
}𝑁−1.
5

𝑡 𝑛=1 𝑡 𝑛=1 A
Fig. 5. Effect of the missing density 𝜔𝚖𝚒𝚜𝚜 on the tracking ability of ATT.

Compared to batch TT methods (e.g., TT-SVD [2] and TT-HSVD
[22]), the cost of ATT is much cheaper as it is independent of the tem-
poral dimension. Besides, its computation involves only cheap matrix–
matrix products and inverse operations of small matrices, and hence,
it avoids the expensive computation of SVD on the tensor’s unfolding
matrices. Compared to TT-FOA that is the first and only adaptive
algorithm for streaming TT decomposition in the literature, ATT shares
the same computational and space complexity.

4. Experiments

In this section, we investigate the tracking ability of ATT with re-
spect to the following aspects: additive noise effect, and its performance
in nonstationary environments. Its effectiveness for real data is demon-
strated with the problem of online video completion in comparison with
the state-of-the-art tensor tracking algorithms.2

Experiment Setup: At time 𝑡, the 𝑡th incomplete slice  𝑡 is gener-
ated at random under the following model:

 𝑡 =  𝑡 ⊛
(

(1)
𝑡 ×1

2 
(2)
𝑡 ×1

3 
(3)
𝑡 ×1

4 𝐠
(4)
𝑡 + 𝑡

)

. (18)

Here,  𝑡 ∈ R𝐼1×𝐼2×𝐼3×1 is a binary tensor whose entries are i.i.d.
Bernoulli random variables with probability 1 − 𝜔𝚖𝚒𝚜𝚜, i.e., 𝜔𝚖𝚒𝚜𝚜 rep-
resents the missing density of  𝑡. Entries of the noise tensor  𝑡 are
i.i.d. from  (0, 𝜎2𝑛 ). 𝐠

(4)
𝑡 ∈ R𝑟3×1 is a Gaussian vector of zero-mean and

unit-variance. TT-cores (1)
𝑡 ,(2)

𝑡 , and (3)
𝑡 are of size 𝐼1 × 𝑟1, 𝑟1 × 𝐼2 × 𝑟2,

and 𝑟2×𝐼3×𝑟3, respectively. Their time variation is modelled as follows
(𝑛)
𝑡 = (𝑛)

𝑡−1+𝜀
(𝑛)
𝑡 , for 𝑛 = 1, 2, 3, where 𝜀 plays a role as the time-varying

factor,  (𝑛)
𝑡 is of the same size as (𝑛)

𝑡 and its entries are also i.i.d from
 (0, 1). We use the following relative error (RE) metric to evaluate the
estimation accuracy:

RE
(

 𝑡𝑟,𝑒𝑠
)

= ‖

‖

‖

 𝑡𝑟 − 𝑒𝑠
‖

‖

‖𝐹

/

‖

‖

‖

 𝑡𝑟
‖

‖

‖𝐹
, (19)

where  𝑡𝑟 (resp. 𝑒𝑠) refers to the true tensor (resp. reconstructed
tensor). In all experiments, we use ATT with only two key stages I
and II. Indeed, the two versions of ATT (with and without stage III)
exhibit the same estimation accuracy when the number of observations
is large, as illustrated in Fig. 2. In a time-varying environment, the
inclusion of stage III can improve the performance of ATT in terms of
both estimation accuracy and convergence rate at the early stage of
tracking process, as shown in Fig. 2(b).

Effect of the noise level 𝜎𝑛: We vary the value of 𝜎𝑛 and evaluate
the performance of ATT. Here, we used a static tensor (i.e., 𝜀 = 0) of
size 20 × 20 × 20 × 1000 and rank 𝐫TT = [5, 5, 5]. The missing density

2 Our MATLAB codes are available online at: https://github.com/thanhtbt/
TT-miss/.

https://github.com/thanhtbt/ATT-miss/
https://github.com/thanhtbt/ATT-miss/
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Fig. 6. Performance comparison between adaptive tensor-train algorithms: Estimation accuracy.
d
i
d
n
c

Fig. 7. Performance comparison between adaptive tensor-train algorithms: Run time.

𝜔𝚖𝚒𝚜𝚜 was set to 10%. We fixed the forgetting factor 𝛽 and the two
regularized parameters 𝜌, 𝜆, at 0.5, 1, and 1, respectively. A significant
change was also created at 𝑡 = 600 (i.e., we set 𝜀 = 1 when 𝑡 = 600
and 𝜀 = 0 otherwise) to investigate how fast ATT could converge. The
result is illustrated in Fig. 3. We can see that the noise level 𝜎𝑛 does
not affect the convergence rate of ATT but only its estimation error.

Effect of the time-varying factor 𝜀: We next investigate the track-
ing ability of ATT in nonstationary environments. Similar to the pre-
vious experiment, we also vary the value of 𝜀 and then evaluate its
estimation accuracy. Most of experimental parameters were kept as
above, except the noise level 𝜎𝑛 which was set to 10−3. Fig. 4 illustrates
the performance of ATT versus the value of 𝜀. We can see that the
estimation accuracy of ATT goes down when 𝜀 increases, but converges
6

towards a steady-state error in the similar manner as in the previous
case. Intuitively, the time-varying factor has an influence on the track-
ing performance of recursive least-squares (RLS) methods.3 However,
as shown in Fig. 4, the value of 𝜀 does not affect ATT’s convergence
rate. This ‘‘phenomenon’’ thus deserves further investigations.

Effect of the missing density 𝜔𝚖𝚒𝚜𝚜: Here, we measure the per-
formance of ATT in the presence of different missing densities. Par-
ticularly, the value of 𝜔𝚖𝚒𝚜𝚜 was chosen among {20%, 40%, 80%}. We
reused the same 4-order streaming tensor above with 𝜎𝑛 = 𝜀 = 10−3.
Fig. 5 shows that the number of missing entries in  𝑡 has an impact on
both convergence rate and estimation accuracy of ATT, i.e., the lower
the value of 𝜔𝚖𝚒𝚜𝚜 is, the better performance ATT achieves. However,
even with 80% missing data, ATT is still able to achieve relatively good
performance.

ATT vs the state-of-the-art algorithms: In this task, we compare
ATT with TT-FOA and its stochastic variant TT-FOA-S [14]. We fixed
the forgetting factor 𝜆 of TT-FOA at 0.5. As the conventional TT-FOA
and TT-FOA-S are not designed for missing data, we reformulated their
update rule by simply putting an observation mask on the data. We
reused the same experiment setup as in the previous tasks. Perfor-
mance comparison results are illustrated in Figs. 6 and 7. We can
see that in the presence of full observations, three algorithms provide
the similar estimation accuracy. However, the convergence rate of TT-
FOA-S is slower than that of ATT and TT-FOA. In the presence of
missing data, ATT outperforms others. The use of a binary observa-
tion mask inadvertently introduces ‘‘noise’’ into the data, as the zero
entries do not accurately represent the true values of the missing
entries. Consequently, both TT-FOA and TT-FOA-S are subjected to
additional additive noise, alongside the standard Gaussian noise. It
explains why TT-FOA and TT-FOA-S fail to track the underlying tensor
in the presence of missing data. In terms of run time, ATT demonstrates
comparable performance to state-of-the-art adaptive TT methods.

Online video completion: Three real video sequences are used in
this task, including ‘‘Lobby‘‘, ‘‘Highway’’, and ‘‘Hall’’.4 Their sizes are
summarized in Table 1. We compare ATT with other online tensor
completion algorithms: TT-FOA [14], TeCPSGD [23], ACP [26], and
ATD [26]. TeCPSGD is dependent only on a regularization parameter

3 It is very well known that one of main sources of the tracking error is
ue to the time-varying signals [25]. Particularly, this error called ‘‘lag-error’’
s caused by the attempt of adaptive RLS methods to track the variation of
ata over time. Here, the time-varying factor is used to model/generate such
onstationary signals, and hence, it is expected to have an impact on the
onvergence behavior of ATT.

4
 Video sequences: http://jacarini.dinf.usherbrooke.ca/.

http://jacarini.dinf.usherbrooke.ca/
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Fig. 8. The 500-th video frame of ‘‘Hall’’ data: 80% pixels are missing.
Table 1
Performance of adaptive tensor decompositions on incomplete video sequences.

Dataset Size Missing Online tensor completion methods

TT-FOA TeCPSGD ACP ATD ATT

RE Runtime RE Runtime RE Runtime RE Runtime RE Runtime

Hall 174 × 144 × 3584 20% 0.2089 38.98 (s) 0.1102 40.26 (s) 0.1156 10.29 (s) 0.1321 53.26 (s) 0.1304 39.36 (s)
40% 0.2704 31.58 (s) 0.1238 32.64 (s) 0.1269 9.89 (s) 0.1353 44.25 (s) 0.1335 31.12 (s)
80% 0.3159 30.51 (s) 0.1362 29.97 (s) 0.1494 9.67 (s) 0.1404 35.40 (s) 0.1417 29.63 (s)

Lobby 128 × 160 × 1546 20% 0.1863 11.02 (s) 0.1172 13.75 (s) 0.1195 4.09 (s) 0.1209 15.40 (s) 0.1253 11.42 (s)
40% 0.2174 9.86 (s) 0.1288 10.91 (s) 0.1363 3.41 (s) 0.1228 14.23 (s) 0.1312 9.63 (s)
80% 0.2406 8.86 (s) 0.1326 9.92 (s) 0.1735 2.52 (s) 0.1344 11.82 (s) 0.1328 8.67 (s)

Highway 320 × 240 × 1700 20% 0.3365 37.39 (s) 0.1652 52.43 (s) 0.1724 10.40 (s) 0.1873 48.20 (s) 0.1919 37.63 (s)
40% 0.3913 36.73 (s) 0.1851 43.11 (s) 0.1902 10.02 (s) 0.1986 40.33 (s) 0.1975 35.87 (s)
80% 0.4264 28.90 (s) 0.1898 34.37 (s) 0.1912 9.80 (s) 0.1992 32.99 (s) 0.2126 26.37 (s)
𝜇 which is set at 0.1. We set the forgetting factor 𝜆 at 0.7, 0.7,
and 0.5, for ACP, ATD, and TT-FOA, respectively. To have a fair
comparison, color video frames were converted into grayscale ones.
The CP-rank, Tucker-rank, and TT-rank were set to 16, [12, 12, 12], and
[6, 6], respectively. These tensor rank values were deliberately chosen to
ensure that the corresponding TT, CP and Tucker models share the same
space (memory) complexity. The experimental results in Table 1 and
Fig. 8 indicate that the proposed ATT method provided a competitive
video completion performance as compared to others. In particular,
ATT produced higher relative errors (RE) than TeCPSGD and ATD, but
demonstrated faster runtimes than both methods in most cases. ACP
is the fastest adaptive tensor-based method for this application, but its
estimation accuracy for cases of highly incomplete observations was
lower that of the proposed ATT method, particularly when dealing with
Hall and Lobby datasets. TT-FOA was unable to perform online video
completion effectively. Notably, with the same space (memory) com-
plexity, the ATT method provides a lower-rank representation for video
sequences than the CP and Tucker-based methods. In particular, ATT
demonstrated superior efficiency in processing high-dimensional video
sequences (e.g., Highway dataset) while offering reasonable estimation
accuracy.

5. Conclusions

In this study, we have considered the problem of tensor tracking
with missing data under tensor-train format. An effective adaptive
tensor-train method called ATT has been proposed. This algorithm is ca-
pable of tracking successfully the underlying tensor-train representation
of highly incomplete streaming tensors in dynamic environments, even
when abrupt changes happen. Its effectiveness for real data has been
demonstrated with the online video completion problem. Future works
will extend ATT to deal with outliers, impulsive and colored noises.
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