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A B S T R A C T

In this paper, we investigate the problem of blind source separation (BSS) through the lens of tensor
decomposition (TD). Two fundamental connections between TD and BSS are established, forming the basis
for two novel tensor-based BSS methods, namely TenSOFO and TCBSS. The former is designed for a joint
individual differences in scaling (INDSCAL) decomposition, addressing instantaneous (linear) BSS tasks; while
the latter efficiently performs a constrained block term decomposition (BTD), aligning with the design of
convolutive BSS. Leveraging the benefits of the alternating direction method of multipliers and the strengths
of tensor representations, both TenSOFO and TCBSS prove to be effective in BSS. Our experimental results
demonstrate the effectiveness of these two proposed methods in addressing both TD and BSS tasks, particularly
when compared to state-of-the-art algorithms.
1. Introduction

In this work, we consider the following blind source separation
(BSS) model:

𝑥𝑚[𝑡] =
𝑅
∑

𝑟=1
𝑦𝑚𝑟[𝑡] =

𝑅
∑

𝑟=1

𝐿
∑

𝓁=0
𝑎𝑚𝑟[𝓁]𝑠𝑟[𝑡 − 𝓁], (1)

where 𝑥𝑚[𝑡] represents the data observed at the 𝑚th sensor (𝑚 =
1, 2,… ,𝑀); 𝑠𝑟[𝑡] is the 𝑟th source signal (𝑟 = 1, 2,… , 𝑅); 𝑎𝑚𝑟[𝓁], 𝓁 =
0, 1,… , 𝐿 are coefficients of the impulse response from the 𝑟th source
to the 𝑚th sensor, and (𝐿+1) is the maximum filter length. Particularly
when 𝐿 = 0, (1) boils down to the problem of instantaneous (linear)
BSS. Given a set of data observations {𝑥𝑚[𝑡]}𝑡≥0, it is desirable to
identify the mixture process and recover the underlying source signals.
In the literature, many effective methods have been proposed for BSS
so far. We refer the readers to [1–3] for good references.

Over the last two decades, tensor decomposition (TD) has emerged
as a powerful processing tool for analyzing multivariate and high
dimensional data in both batch and adaptive settings [4–6]. With its
capability to factorize multiway arrays (referred to as tensors) into
basic components, TD has consistently demonstrated remarkable suc-
cess in various signal processing and machine learning applications.
Particularly in the context of BSS, several tensorization techniques have
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been introduced to transform time-series signal and data models into
tensor representations, such as time–frequency tools [7], Hankeliza-
tion [8], Löwnerization [9], and segmentation [10], among others.
These techniques pave the way for the promising integration of tensor
decomposition methods in addressing BSS tasks effectively. In this
paper, we aim to investigate the problem of BSS through the lens
of tensor decomposition, leveraging its advantages and advances to
significantly enhance blind source separation performance.

1.1. Related works

In the literature, several tensor-based methods have been proposed
for BSS tasks [2]. Among them, many make the use of the classi-
cal canonical polyadic (CP) decomposition, which allows tensors to
be expressed as a sum of rank-1 components [4]. In particular, a
connection between this decomposition and joint (simultaneous) di-
agonalization was established in [11], which laid the foundation for
various CP-based BSS algorithms. Some notable examples of CP-based
BSS methods include FOOBI [12], SOBIUM [13], PARAFAC-SD [14],
and DC-CPD [15]. High-order SVD or Tucker decomposition, which
factorize a tensor into a smaller core tensor and a set of loading
matrices, have also been employed for BSS tasks, as demonstrated in
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165-1684/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sigpro.2024.109483
Received 18 November 2023; Received in revised form 6 March 2024; Accepted 20
 March 2024

https://www.elsevier.com/locate/sigpro
https://www.elsevier.com/locate/sigpro
mailto:thanhletrung@vnu.edu.vn
https://doi.org/10.1016/j.sigpro.2024.109483
https://doi.org/10.1016/j.sigpro.2024.109483
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2024.109483&domain=pdf


Signal Processing 221 (2024) 109483T.T. Le et al.

t
e
f
b

s
o
s
o
f
c
c
H
t
m
t
B
o
a
r
t
a
f
e
t
a
f
e

1

c
t
e
‘
O
n
s
t
o
f
(
a
j
a
a
p

p
t
n
S
L
a
w
w
n
d

s
c
t
S
a
s
T
i
v
n
a
s
t
e
i
f
s
m
m
T
t
m
p
p
f
i
k
S
T
i

c
b
s
i
c
t
T
s
c
p
s

s
e
i
f
a
a
i
e
i
m
a
o
b
T
r

e
o

works such as [16–18]. Another tensor approach in BSS is the block
component analysis or block term decomposition (BTD) which unifies
the CP and Tucker decompositions [19]. Tensorization techniques like
Hankelization [8], Löwnerization [9], and segmentation [10] have been
developed to enable the use of BTD in BSS, particularly for source
signals with specific characteristics such as exponential or polynomial
behavior. Specifically, the LL1-BTD (BTD with multilinear rank-(𝐿,𝐿, 1)
erms) plays the central role in various BSS-related tasks, ensuring
xact recovery of components from data observations. It has already
ound applications in hyperspectral unmixing [20–22], separation of
iomedical signals [23–25], blind deconvolution [26,27], and others.

The existing tensor-based BSS methods are, however, either de-
igned for handling instantaneous BSS rather than convolutive ones
r applicable only to certain classes of source signals. One potential
olution is to convert convolutive mixtures into instantaneous ones,
ften accomplished through frequency domain representations or trans-
ormations. However, this introduces a set of new issues, including
omplex-valued data, permutation and scaling indeterminacies, and the
onsistency of filter coefficients across frequencies, to name a few [3].
ence, there is a need to readapt current tensor-based BSS algorithms

o tackle them or, alternatively, to delve deeper into exploring novel
ethods that can bypass such issues. In parallel, we know that statis-

ical properties of data play a crucial role for BSS tasks [28]. Many
SS methods have effectively utilized second-order (SO) and/or fourth-
rder (FO) statistics for source separation, as demonstrated in [29–32],
mong others. SO statistics offer insights into the correlation and linear
elationships among observed signals, while FO statistics can capture
he non-Gaussian nature of the sources and higher-order dependencies
mong the data observations. Most existing methods, however, either
ocus solely on one type of data statistics (e.g., SO or FO) or partially
xploit their information. Consequently, our objective in this paper is
o integrate SO and FO statistics with tensor analysis for BSS. This
pproach is expected to provide a more comprehensive set of statistical
eatures and leverage the benefits of tensor representation, leading to
nhanced robustness and accuracy in source separation performance.

.2. Main contributions

Following our preliminary study presented in [33,34], the main
ontributions of this work can be summarized as follows. We first con-
ribute to the literature on BSS by introducing a new tensor method that
ffectively leverages data statistics, namely TenSOFO (where ‘‘Ten’’,
‘SO’’, and ‘‘FO’’ stand for Tensors, Second Order statistics, and Fourth
rder statistics, respectively). The proposed method is based on a
ovel joint (simultaneous) analysis called individual differences in
caling (INDSCAL), which is a symmetric variant of CP for third-order
ensors with symmetry in two modes [35]. Particularly, this analysis
ffers improved interpretability as compared to the classical CP model
or BSS, which uses SO and FO represented by symmetric matrices
covariance) and tensors (quadricovariance), respectively. We propose
n effective alternating direction method of multipliers (ADMM)-based
oint INDSCAL decomposition of two symmetric third-order tensors. In
ddition, we establish a fundamental link between SO-FO based BSS
nd joint INDSCAL decomposition, allowing us to effectively apply the
roposed INDSCAL method for instantaneous BSS tasks.

In contrast to the existing BSS methods using LL1-BTD, which
rimarily employ low-rank constraints on the underlying source signals,
he joint INDSCAL model presents an alternative approach leveraging
ice properties of higher-order statistics (HOS) in data observations.
pecifically, the proposed method offers several appealing features over
L1-BTD for BSS tasks, including (i) a memory-saving representation
nd efficient decomposition, (ii) vanishing of the Gaussian noise terms
hen using FO statistics, (iii) the ability to handle source signals
ithout prior information on their rank, and among others. Instanta-
eous BSS methods based on LL1-BTD directly construct tensors from
2

ata observations (e.g., by tensorizing signals through Hankelization, S
egmentation or Löwnerization), which can result in large tensors. In
ontrast, TenSOFO employs data statistics to construct two third-order
ensors of small size (refer to Section 3 for details). Consequently, Ten-
OFO provides a more efficient memory-saving tensor representation
nd decomposition, particularly advantageous for processing long time-
eries signals like speech and audio sampled at high rates. Additionally,
enSOFO, along with other HOS-based methods, benefits from the

nherent property that higher-order cumulants of Gaussian random
ariables are zero, making it less sensitive to the effect of Gaussian
oise. Another advantage of the proposed method over LL1-BTD is
s follows: LL1-BTD based methods often require rank information of
ource signals, which may not always be available or is challenging
o determine in practice. In contrast, the proposed method operates
ffectively without such information, performing well under statistical
ndependence assumptions. Furthermore, the proposed method differs
rom the existing coupled tensor-based BSS method, DC-CPD [15], in
everal aspects. DC-CPD is designed to address joint BSS tasks involving
ulti-set signals. It constructs third-order tensors from cross-covariance
atrices, assuming intra-set independence and inter-set dependence.
herefore, the symmetry in DC-CPD arises from concatenating these
ensors and their permuted versions (see Section I in Supplementary
aterials of [15] for details). In contrast, our method involves the com-
utation of covariance and quadricovariance of data at pairs of time
oints, resulting in an intrinsic symmetric structure derived directly
rom these covariance matrices and quadricovariance tensors. This
ntrinsic symmetry facilitates the formulation of the joint INDSCAL, also
nown as symmetric CP model. Additionally, DC-CPD relies solely on
O statistics, whereas TenSOFO incorporates both SO and FO statistics.
his distinction makes our method more comprehensive and effective

n addressing BSS tasks.
Next, we propose the second tensor method aimed at dealing with

onvolutive BSS directly in time domain. In contrast to existing tensor-
ased BSS methods, our approach involves exploiting the merits of a
pecial variant of the block term decomposition (BTD) where the load-
ng factors are constrained to be identical. To elaborate, we establish a
onnection between convolutive BSS and this constrained BTD, forming
he groundwork for our novel method called TCBSS (which stands for
ensor based Convolutive BSS). Specifically by exploiting second-order
tatistics, we first construct a third-order tensor by stacking a set of
ovariance matrices, and then, apply TCBSS to identify the mixing
rocess and sources. A variant of TCBSS, incorporating fourth-order
tatistics, is also introduced.

By reformulating BSS within the framework of tensor decompo-
ition, several advantageous properties of INDSCAL and BTD can be
ffectively leveraged for BSS tasks. Specifically, the identifiability issues
nherent in BSS are closely linked to the uniqueness of solutions derived
rom these tensor-based approaches. The two proposed tensor models
re essentially unique under mild conditions (i.e., unique up to a scale
nd a permutation), thus aiding in addressing identifiability issues
n BSS. This is also feasible in cases when the number of sources
xceeds the number of mixtures, as demonstrated by Proposition 2
n Section 3.1. Additionally, tensor decomposition allows for flexible
odeling of the data, enabling the incorporation of constraints and

ssumptions tailored to specific BSS tasks. Moreover, the utilization
f tensor models holds promise for enhancing separation performance
y capturing higher-order statistical dependencies inherent in the data.
his is illustrated by several experimental results on both synthetic and
eal datasets in Section 5.

Beyond its primary contributions to BSS, this paper also enriches the
xisting tensor decomposition literature by introducing two effective
ptimization approaches for factorizing tensors under the joint IND-

CAL and BTD models, outperforming the state-of-the-art algorithms.
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1.3. Paper organization

The remainder of this paper is structured as follows. In Section 2,
we provide a brief overview of the preliminaries, covering standard
notations, operations, tensor decomposition models, data statistics, and
the alternating direction method of multipliers. Section 3 establishes
a fundamental link between instantaneous BSS and joint INDSCAL
decomposition, subsequently introducing our first method, TenSOFO.
Section 4 introduces the second method, TCBSS, designed to address
convolutive BSS tasks. In Section 5, we present extensive experiments
to demonstrate the effectiveness of these two proposed method and
Section 6 concludes the paper.

2. Preliminaries

2.1. Notations and operations

In this paper, we use the following notations. Lowercase letters rep-
resent scalars (e.g., 𝑥), while boldface letters indicate vectors (e.g., 𝐱).

atrices and tensors are denoted using boldface capital letters (e.g., 𝐗)
nd bold calligraphic letters (e.g., ), respectively. The (𝑖1, 𝑖2,… , 𝑖𝑁 )th

element of a tensor  is denoted as  (𝑖1, 𝑖2,… , 𝑖𝑁 ), ( )𝑖1𝑖2…𝑖𝑁 , or
𝑥𝑖1𝑖2…𝑖𝑁 . The mode-𝑛 matricization of a tensor  is denoted as [ ](𝑛).
The transpose operation is represented as (⋅)⊤, the pseudo-inverse as
(⋅)#, and the Frobenius norm as ‖ ⋅ ‖𝐹 . The mode-𝑛 product of a tensor
 and a matrix 𝐔 is denoted as  ×𝑛𝐔. The concatenation of tensors 
and  along the last mode is represented as  ⊞  . Symbols ◦, ⊙, and
⋇ are used to represent the outer, Khatri–Rao, and Hadamard products,
respectively. Symbols ⊗ and ⊠ denote the Kronecker and block-wise
Kronecker products. The function ‘‘blkdiag’’ constructs a block diagonal
matrix or tensor by arranging the inputs along its diagonal. The func-
tion ‘‘length’’ returns the number of entries in a vector, matrix, or tensor.
The function ‘‘mat’’ reshapes a tensor  of size 𝐼×𝐽×𝐾×𝐿 into a matrix
𝐗 of size 𝐼𝐽 ×𝐾𝐿 such that 𝐗((𝑖−1)𝐼+𝑗, (𝑘−1)𝐼+ 𝑙) =  (𝑖, 𝑗, 𝑘, 𝑙). In the
following, we present some frequently-used mathematical operations
considered in this paper.

The mode-𝑛 product of a tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 and a matrix
𝐔 ∈ R𝐽𝑛×𝐼𝑛 returns a new tensor  =  ×𝑛 𝐔 ∈ R𝐼1×⋯×𝐼𝑛−1×𝐽𝑛×𝐼𝑛+1×⋯×𝐼𝑁

whose elements are given by

(𝑖1,… , 𝑖𝑛−1, 𝑗𝑛, 𝑖𝑛+1,… , 𝑖𝑁 )

=
𝐼𝑛
∑

𝑖𝑛=1
 (𝑖1,… , 𝑖𝑛−1, 𝑖𝑛, 𝑖𝑛+1,… , 𝑖𝑁 )𝐔(𝑗𝑛, 𝑖𝑛). (2)

If  =  ×𝑛 𝐔, then [](𝑛) = 𝐔[ ](𝑛) ∀𝑛.
The concatenation of two tensors  ∈ R𝐼1×⋯×𝐼𝑁−1×𝐼𝑁 and  ∈

R𝐼1×⋯×𝐼𝑁−1×𝐽𝑁 along the last mode yields a new tensor  =  ⊞  ∈
R𝐼1×⋯×𝐼𝑁−1×(𝐼𝑁+𝐽𝑁 ) whose elements are defined as

(𝑖1,… , 𝑖𝑛−1, 𝑘) =

⎧

⎪

⎨

⎪

⎩

 (𝑖1,… , 𝑖𝑛−1, 𝑘) if 𝑘 ≤ 𝐼𝑁 ,

(𝑖1,… , 𝑖𝑛−1, 𝑘) if 𝑘 > 𝐼𝑁 .
(3)

The Hadamard product (aka elementwise product) of two matrices
𝐀 ∈ R𝑀×𝑁 and 𝐁 ∈ R𝑀×𝑁 is defined as

𝐀 ⋇ 𝐁 =

⎡

⎢

⎢

⎢

⎣

𝑎11𝑏11 … 𝑎1𝑁𝑏1𝑁
⋮ ⋱ ⋮

𝑎𝑀1𝑏𝑀1 … 𝑎𝑀𝑁𝑏𝑀𝑁

⎤

⎥

⎥

⎥

⎦

. (4)

The Kronecker product of two matrices 𝐀 ∈ R𝑀×𝑁 and 𝐁 ∈ R𝑃×𝑄

results in

𝐀⊗ 𝐁 =

⎡

⎢

⎢

⎢

𝑎11𝐁 … 𝑎1𝑁𝐁
⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

. (5)
3

⎣
𝑎𝑀1𝐁 … 𝑎𝑀𝑁𝐁

⎦

The Khatri–Rao product (aka column-wise Kronecker product) of
𝐀 = [𝐚1, 𝐚2, … , 𝐚𝑅] and 𝐁 = [𝐛1,𝐛2,… ,𝐛𝑅] yields

𝐀⊙ 𝐁 =
[

𝐚1 ⊗ 𝐛1, 𝐚2 ⊗ 𝐛2,… , 𝐚𝑅 ⊗ 𝐛𝑅
]

. (6)

When 𝐁 = 𝐀, we denote (6) as 𝐀⊙2 = 𝐀⊙ 𝐀 for short.
The block-wise Kronecker product of 𝐀 = [𝐀1,𝐀2,… ,𝐀𝑅] and 𝐁 =

[𝐁1,𝐁2, … ,𝐁𝑅] is denoted as

𝐀⊠ 𝐁 =
[

𝐀1 ⊗ 𝐁1,𝐀2 ⊗ 𝐁2,… ,𝐀𝑅 ⊗ 𝐁𝑅
]

. (7)

2.2. Tensor decomposition

We provide a brief overview of two tensor formats: INDSCAL and
type-2 BTD, which are utilized in our work.

2.2.1. INDSCAL
The INdividual Differences in SCALing (INDSCAL) represents a vari-

ant of CP/PARAFAC decomposition that enables the factorization of
symmetric tensors [4,35]. Under the INDSCAL model, a third-order
tensor  of size 𝐼 × 𝐼 ×𝐾 with elements satisfying 𝑥𝑖𝑗𝑘 = 𝑥𝑗𝑖𝑘 for all
𝑖, 𝑗, 𝑘 can be decomposed into two factors 𝐀 ∈ R𝐼×𝑅 and 𝐂 ∈ R𝐾×𝑅 (𝑅
eing the tensor rank) as follows

𝛥
=
[[

𝐀,𝐀,𝐂
]]

=
𝑅
∑

𝑟=1
𝐚𝑟◦𝐚𝑟◦𝐜𝑟, (8)

where 𝐚𝑟 and 𝐜𝑟 are the 𝑟th columns of 𝐀 and 𝐂, respectively. Its com-
utation typically follows the same iterative procedure to computing
he classical CP decomposition (i.e., CP-ALS) [4]. In CP-ALS, the two
‘𝐀’’ matrices are treated as separate factors, denoted as 𝐀𝙻 and 𝐀𝚁

(for left and right, respectively), and they are updated independently
without an explicit constraint enforcing their equality. Despite starting
with different initial estimates, the inherent symmetry of the data
together with the uniqueness of CP decomposition eventually lead the
two ‘‘𝐀’’ matrices to converge, up to a scaling factor. Being a special
case of CP, the uniqueness of INDSCAL is also guaranteed under mild
conditions [36].

2.2.2. Type-2 BTD
The type-2 BTD is a variant of the block term decomposition

(BTD) [37]. It aims to factorize a third-order tensor  ∈ R𝐼×𝐽×𝐾 into a
et of low multilinear-rank components { 𝑟}𝑅𝑟=1 as follows

=
𝑅
∑

𝑟=1
 𝑟 =

𝑅
∑

𝑟=1
𝑟 ×1 𝐀𝑟 ×2 𝐁𝑟. (9)

ere, 𝑟 ∈ R𝐿𝑟×𝑀𝑟×𝐾 represents the core tensor of the 𝑟th component
 𝑟, while the loading factors 𝐀𝑟 ∈ R𝐼×𝐿𝑟 and 𝐁𝑟 ∈ R𝐽×𝑀𝑟 are full
column rank matrices. Since (9) is trilinear in 𝐀 = [𝐀1,𝐀2,… ,𝐀𝑅],
𝐁 = [𝐁1,𝐁2,… ,𝐁𝑅], and  = blkdiag(1,2,… ,𝑅), its computation
follows the common alternating least-squares (ALS) approach [38].
Also, the type-2 BTD is essential unique under mild conditions [37].
To support our algorithm development, we present three mode-𝑛 matrix
representations of  :
[


]

(1) = 𝐀
[[

1 ×2 𝐁1
]⊤
(1),… ,

[

𝑅 ×2 𝐁𝑅
]⊤
(1)
]⊤, (10)

[


]

(2) = 𝐁
[[

1 ×1 𝐀1
]⊤
(2),… ,

[

𝑅 ×1 𝐀𝑅
]⊤
(2)
]⊤, (11)

[


]

(3) =
[[

1
]

(3),
[

2
]

(3),… ,
[

𝑅
]

(3)
](

𝐁⊠ 𝐀
)⊤. (12)

2.3. Data statistics

Consider a data vector 𝐮[𝑡] ∈ R𝐼 of zero mean. We can analyze its

second-order (SO) and fourth-order (FO) statistics using its covariance
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f
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(
(

f
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𝐂

w
(

i

w

matrix 𝐑𝐮 ∈ R𝐼×𝐼 and quadricovariance tensor 𝐮 ∈ R𝐼×𝐼×𝐼×𝐼 ,
respectively. These statistics are defined as follows1:

𝐑𝐮[𝑡, 𝜏] = E
{

𝐮[𝑡]𝐮[𝑡 − 𝜏]⊤
}

, (13)
(

𝐮[𝑡, {𝝉}]
)

𝑖𝑗𝑘𝑙
= Cum

{

𝑢𝑖[𝑡], 𝑢𝑗 [𝑡 − 𝜏1], 𝑢𝑘[𝑡 − 𝜏2], 𝑢𝑙[𝑡 − 𝜏3]
}

, (14)

for the time lags 𝜏 and 𝝉 ≡ {𝜏1, 𝜏2, 𝜏3}, where 𝑢𝑖[𝑡] is the 𝑖th entry of 𝐮[𝑡]
and the fourth-order cumulant ‘‘Cum(⋅)’’ is given by

Cum
{

𝑥𝑖, 𝑥𝑗 , 𝑥𝑘, 𝑥𝑙
}

= E
{

𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙
}

− E
{

𝑥𝑖𝑥𝑗
}

E
{

𝑥𝑘𝑥𝑙
}

− E
{

𝑥𝑖𝑥𝑘
}

E
{

𝑥𝑗𝑥𝑙
}

− E
{

𝑥𝑖𝑥𝑙
}

E
{

𝑥𝑗𝑥𝑘
}

. (15)

2.4. Alternating direction method of multipliers

Alternating Direction Method of Multipliers (ADMM) is an effective
primal–dual optimization framework designed to deal with convex
constrained problems of the following form [39]

min
𝐱,𝐲

𝑓 (𝐱) + 𝑔(𝐲) subject to 𝐳(𝐱, 𝐲) = 𝐜, (16)

where the objective function is separable in 𝐱 and 𝐲, and 𝐳(𝐱, 𝐲) =
𝐜 represents constraints on parameters of interest. The augmented
Lagrangian corresponding to (16) is given by

(𝐱, 𝐲,𝝁) = 𝑓 (𝐱) + 𝑔(𝐲) + 𝜌
2
‖

‖

‖

𝐜 − 𝐳(𝐱, 𝐲)‖‖
‖

2

𝐹
+ 𝝁⊤

(

𝐜 − 𝐳(𝐱, 𝐲)
)

, (17)

where 𝜌 > 0 is a regularization parameter and 𝝁 is the dual variable.
ADMM relies on the duality theory for convex optimization, where the
objective is to minimize the augmented Lagrangian w.r.t. 𝐱, 𝐲 and a
ixed 𝝁. Conversely, the dual function ℎ(𝝁) = min𝐱,𝐲 (𝐱, 𝐲,𝝁) should

be maximized w.r.t. 𝝁. Consequently, ADMM performs an alternation
between minimizing (⋅) w.r.t. 𝐱 and 𝐲 and employing gradient ascent
to maximize ℎ(𝝁).

3. Instantaneous BSS: Joint INDSCAL decomposition based
method

In this section, we present a link between joint INDSCAL decomposi-
tion and instantaneous BSS. Subsequently, we introduce a novel tensor
method for BSS named TenSOFO which effectively leverages SO and
FO statistics. See Fig. 1 for an illustration.

3.1. Link between instantaneous BSS and joint INDSCAL decomposition

The convolutive BSS model (1) can be transformed into an instanta-
neous BSS model when the filter length is reduced to one (i.e., 𝐿 = 0).
In this case, we can recast (1) into the following linear model

𝐱[𝑡] = 𝐀𝐬[𝑡], (18)

where 𝐱[𝑡] =
[

𝑥1[𝑡], 𝑥2[𝑡],… , 𝑥𝑀 [𝑡]
]⊤ ∈ R𝑀 represents the data observa-

tion vector, 𝐬[𝑡] =
[

𝑠1[𝑡], 𝑠2[𝑡],… , 𝑠𝑅[𝑡]
]⊤ ∈ R𝑅 is the source vector, and

𝐀 ∈ R𝑀×𝑅 is the mixing matrix defined as

𝐀 =

⎡

⎢

⎢

⎢

⎣

𝑎11[0] … 𝑎1𝑅[0]

⋮ ⋱ ⋮

𝑎𝑀1[0] … 𝑎𝑀𝑅[0]

⎤

⎥

⎥

⎥

⎦

. (19)

1 In this work, we focus on tensor decomposition with real-valued data
source signals and mixtures). The definitions of 𝐑𝐮 and 𝐮 can be derived
ollowing (13) and (14), respectively. In a very general way, it is essential to
onsider the conjugate complex elements when dealing with complex data at
arious time lags. Our proposed methods, presented in the following sections,
an be readily adapted to address complex-valued scenarios. These extensions
an be achieved by substituting the transpose (⋅)⊤ with the conjugate (Her-

mitian) transpose (⋅)𝐻 , with the exception of certain reshaping and unfolding
operators such as (62) and (63).
4

In many applications, the underlying sources are stationary, non-
Gaussian and mutually statistically independent, while being individu-
ally correlated for different lags, such as [30,40,41]. In such cases, the
computation of second-order (SO) statistics of 𝐱[𝑡] leads to the following
relation

𝐑𝐱[𝑡, 𝜏] = 𝐀E
{

𝐬[𝑡]𝐬[𝑡 − 𝜏]⊤
}

𝐀⊤ = 𝐀𝐑𝐬[𝑡, 𝜏]𝐀⊤, (20)

𝐑𝐬[𝑡, 𝜏] = diag
{

𝜎21 [𝜏], 𝜎
2
2 [𝜏],… , 𝜎2𝑅[𝜏]

}

, (21)

here 𝜎2𝑟 [𝜏] = E
{

𝑠𝑟[𝑡]𝑠𝑟[𝑡 − 𝜏]
}

. While the computation of fourth-order
FO) statistics of 𝐱[𝑡] results in

𝐱[𝑡, {𝝉}]
)

𝑖𝑗𝑘𝑙
=

∑

𝑟1𝑟2𝑟3𝑟4

(

𝐬[𝑡, {𝝉}]
)

𝑟1𝑟2𝑟3𝑟4
𝐀(𝑖, 𝑟1)

𝐀(𝑗, 𝑟2)𝐀(𝑘, 𝑟3)𝐀(𝑙, 𝑟4), (22)

or all index values. Upon transforming (22) into matrix form, the
esulting expression is as follows

𝐱[𝑡, {𝝉}] =
(

𝐀⊗ 𝐀
)

�̃�𝐬[𝑡, {𝝉}]
(

𝐀⊗ 𝐀
)⊤, (23)

here 𝐂𝐱[𝑡, {𝝉}] = mat(𝐱[𝑡, {𝝉}]) ∈ R𝑀2×𝑀2 and �̃�𝐬[𝑡, {𝝉}] = mat
𝐬[𝑡, {𝝉}]

)

∈ R𝑅2×𝑅2 . When the underlying sources are statistically
ndependent, the matrix �̃�𝐬[𝑡, {𝝉}] contains at least 𝑅4 −𝑅 zeros. Thus,

the expression (23) boils down to a simpler one

𝐂𝐱[𝑡, {𝝉}] =
(

𝐀⊙ 𝐀
)

𝐂𝐬[𝑡, {𝝉}]
(

𝐀⊙ 𝐀
)⊤, (24)

𝐂𝐬[𝑡, {𝝉}] = diag
{

𝜅1[{𝝉}], 𝜅2[{𝝉}],… , 𝜅𝑅[{𝝉}]
}

, (25)

where 𝜅𝑟[{𝝉}] = Cum
{

𝑠𝑟[𝑡], 𝑠𝑟[𝑡− 𝜏1], 𝑠𝑟[𝑡− 𝜏2], 𝑠𝑟[𝑡− 𝜏3]
}

. To sum up, we
obtain

𝐑𝐱[𝑡, 𝜏] = 𝐀𝐑𝐬[𝑡, 𝜏]𝐀⊤ and 𝐂𝐱[𝑡, {𝝉}] = 𝐀⊙2𝐂𝐬[𝑡, {𝝉}]𝐀⊤⊙2, (26)

where 𝐀⊙2 = 𝐀⊙ 𝐀.
In this work, we construct two tensors  ∈ R𝑀×𝑀×𝑁1 and  ∈

R𝑀2×𝑀2×𝑁2 from the set of 𝑁1 matrices
{

𝐑𝐱[𝑡, 𝜏𝑛]
}𝑁1
𝑛=1 and 𝑁2 matrices

{

𝐂𝐱[𝑡, 𝝉𝑛]
}𝑁2
𝑛=1 as follows

 = 𝐑𝐱[𝑡, 𝜏1]⊞ 𝐑𝐱[𝑡, 𝜏2]⋯⊞ 𝐑𝐱[𝑡, 𝜏𝑁1
], (27)

 = 𝐂𝐱[𝑡, {𝝉1}]⊞ 𝐂𝐱[𝑡, {𝝉2}]⋯⊞ 𝐂𝐱[𝑡, {𝝉𝑁2
}], (28)

i.e., (∶, ∶, 𝑛1) = 𝐑𝐱[𝑡, 𝜏𝑛1 ] and (∶, ∶, 𝑛2) = 𝐂𝐱[𝑡, {𝝉𝑛2}] for 1 ≤ 𝑛1 ≤ 𝑁1
and 1 ≤ 𝑛2 ≤ 𝑁2. Here, each element of  and  can be expressed as

(𝑖, 𝑗, 𝑛1) =
𝑅
∑

𝑟=1
𝐀(𝑖, 𝑟)𝐀(𝑗, 𝑟)𝜎2𝑟 [𝜏𝑛1 ], (29)

(𝑘, 𝑙, 𝑛2) =
𝑅
∑

𝑟=1
𝐀⊙2(𝑘, 𝑟)𝐀⊙2(𝑙, 𝑟)𝜅𝑟[{𝝉𝑛2}]. (30)

Accordingly, we can represent  and  by

 =
𝑅
∑

𝑟=1
𝐀(∶, 𝑟)◦𝐀(∶, 𝑟)◦𝜮(∶, 𝑟), (31)

 =
𝑅
∑

𝑟=1
𝐀⊙2(∶, 𝑟)◦𝐀⊙2(∶, 𝑟)◦𝐊(∶, 𝑟), (32)

here two matrices 𝜮 ∈ R𝑁1×𝑅 and 𝐊 ∈ R𝑁2×𝑅 are given by

𝜮 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎21 [𝜏1] 𝜎22 [𝜏1] … 𝜎2𝑅[𝜏1]

𝜎21 [𝜏2] 𝜎22 [𝜏2] … 𝜎2𝑅[𝜏2]

⋮ ⋮ ⋮ ⋮

𝜎21 [𝜏𝑁1
] 𝜎22 [𝜏𝑁1

] … 𝜎2𝑅[𝜏𝑁1
]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (33)

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜅1[{𝝉1}] 𝜅2[{𝝉1}] … 𝜅𝑅[{𝝉1}]

𝜅1[{𝝉2}] 𝜅2[{𝝉2}] … 𝜅2𝑅[{𝝉2}]

⋮ ⋮ ⋮ ⋮

𝜅1[{𝝉𝑁2
}] 𝜅2[{𝝉𝑁2

}] … 𝜅𝑅[{𝝉𝑁2
}]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (34)
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Fig. 1. TenSOFO – A Joint INDSCAL Decomposition based Instantaneous BSS. TenSOFO comprises three main steps, including (i) extracting second-order (SO) and fourth-order
(FO) statistics from observations to obtain two sets of covariance matrices {𝐑𝐱[𝑡, 𝜏𝑛]}

𝑁1
𝑛=1 and quadricovariance matrices {𝐂𝐱[𝑡, {𝝉𝑛}]}

𝑁2
𝑛=1; (ii) forming two third-order tensors  and

, by stacking {𝐑𝐱[𝑡, 𝜏𝑛]}
𝑁1
𝑛=1 and {𝐑𝐱[𝑡, 𝜏𝑛]}

𝑁1
𝑛=1, respectively; and (iii) performing a joint INDSCAL decomposition of  and  to derive the mixing matrix 𝐀.
In other words, they admit the following INDSCAL factorization (8)

 =
[[

𝐀,𝐀,𝜮
]]

and  =
[[

𝐀⊙2,𝐀⊙2,𝐊
]]

. (35)

Interestingly, under mild (and easy-to-check) conditions, the joint (cou-
pled) INDSCAL decomposition (35) is essentially unique, as highlighted
in Propositions 1 and 2.

Proposition 1 (General Case). Let 𝑁 = min(𝑁1, 𝑁2). If either 𝑅 < 𝑀 or
𝑀 ≤ 𝑅 ≤ min(𝑁, 2𝑀 − 2) or max(𝑀,𝑁1, 𝑁2) ≤ 𝑅 ≤ (2𝑀 + 𝑁 − 2)∕2,
then (35) is essentially unique.

Proposition 2 (Underdetermined Case). Let 𝑁 = max(𝑁1, 𝑁2). When

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅 ≤ 𝑀2 −𝑀
2

if 2 ≤𝑀 ≤ 𝑅 ≤ 𝑁

𝑅 ≤
𝑁 + 3𝑀 − 1 −

√

(𝑁 −𝑀)2 + 2𝑁 + 6𝑀 − 3
2

if 2 ≤ 𝑁 ≤𝑀 ≤ 𝑅

𝑅 ≤
2𝑀 + 2𝑁 + 1 −

√

8𝑁 + 8𝑀 + 1
2

if 2 ≤𝑀 ≤𝑀 ≤ 𝑅,

(36)

then (35) is essentially unique.

The conditions of Proposition 1 follow from Kruskal’s condition,
while those of Proposition 2 are corollaries derived from Propositions
1.1, 1.2 and 1.3 in [36]. Propositions 1 and 2 hold when the elements of
the loading factors in the joint tensor decomposition randomly drawn
from continuous distributions. As a result, through the joint INDSCAL
decomposition of both  and  in (35), we directly estimate the mixing
matrix 𝐀. In next subsection, we present an efficient optimization
framework to simultaneously decompose  and .

3.2. Optimization framework

The joint INDSCAL decomposition of  and  in (35) can be
obtained by solving the following constrained minimization

min 𝑓 (𝐁,𝐊) + 𝑔(𝐀,𝜮) subject to 𝐁 = 𝐀⊙2, (37)

where 𝑓 (𝐁,𝐊) = ‖

‖

‖

−[[𝐁,𝐁,𝐊]]‖‖
‖

2

𝐹
and 𝑔(𝐀,𝜮) = ‖

‖

‖

−[[𝐀,𝐀,𝜮]]‖‖
‖

2

𝐹
. Here,

(37) can be expressed in the ADMM form, and thus, we can construct
the corresponding augmented Lagrangian function with a parameter 𝜌𝙾
as follows

 (𝐁,𝐊,𝐀,𝜮,𝐙) = 𝑓 (𝐁,𝐊)+𝑔(𝐀,𝜮)+
⟨

𝐙,𝐁 − 𝐀
⟩

+
𝜌𝙾 ‖

‖𝐁−𝐀 ‖

‖

2
, (38)
5

𝙾 ⊙2 2 ‖

⊙2
‖𝐹
Algorithm 1: TenSOFO
Input:  ∈ R𝑀×𝑀×𝑁1 and  ∈ R𝑀2×𝑀2×𝑁2

Output: Loading factors 𝐀,𝜮, and 𝐊.
Initialization:

𝑙 = 1, 𝐔(0) = 𝟎𝑀2×𝑅, any 𝐀(0) ∈ R𝑀×𝑅

while stopping criteria are not met do
{

𝐁(𝑙),𝐊(𝑙)} = argmin
𝐁,𝐊

{

𝑓 (𝐁,𝐊) +
𝜌O
2
‖

‖

‖

𝐁 − 𝐀(𝑙−1)
⊙2 + 𝐔(𝑙−1)‖

‖

‖

2

𝐹

}

(P1.1)

{

𝐀(𝑙),𝜮(𝑙)} = argmin
𝐀,𝜮

{

𝑔(𝐀,𝜮) +
𝜌O
2
‖

‖

‖

𝐁(𝑙) − 𝐀⊙2 + 𝐔(𝑙−1)‖
‖

‖

2

𝐹

}

(P1.2)

𝐔(𝑙) = 𝐔(𝑙−1) + 𝐁(𝑙) − 𝐀(𝑙)
⊙2 (P1.3)

𝑙 = 𝑙 + 1

end

where 𝐙 ∈ R𝑀2×𝑅 is the dual variable. Generally, the regularization
parameter 𝜌𝙾 is used as the step size in the dual update [39]. Denote
by 𝐔 = 𝐙∕𝜌𝙾 the scaled version of 𝐙, we reformulate (38) as follows

𝙾(𝐁,𝐊,𝐀,𝜮,𝐔) = 𝑓 (𝐁,𝐊)+𝑔(𝐀,𝜮)+
𝜌𝙾
2
‖

‖

‖

𝐁−𝐀⊙2+𝐔‖‖
‖

2

𝐹
−
𝜌𝙾
2
‖

‖

‖

𝐔‖‖
‖

2

𝐹
. (39)

Accordingly, at each iteration 𝑙, the dual update is simply computed
as 𝐔(𝑙) = 𝐔(𝑙−1) + 𝐁(𝑙) − 𝐀(𝑙)

⊙2, and it does not involve the use of 𝜌𝙾. In
particular, our proposed ADMM solver is outlined in Algorithm 1. In the
following, we detail the optimization approach for minimizing (P1.1)
and (P1.2).

3.2.1. Updates of 𝐁(𝑙) and 𝐊(𝑙)

Minimization (P1.1) is equivalent to the following constrained op-
timization

argmin
𝐁𝙻 ,𝐁𝚁 ,𝐊

‖

‖

‖

 − [[𝐁𝙻,𝐁𝚁,𝐊]]‖‖
‖

2

𝐹
+
𝜌𝙾
2
‖

‖

‖

𝐁𝙻 − 𝐀(𝑙−1)
⊙2 + 𝐔(𝑙−1)‖

‖

‖

2

𝐹

subject to 𝐁𝙻 = 𝐁𝚁, (40)

where the two ‘‘𝐁’’ matrices in 𝑓 (𝐁,𝐊) are considered as separate load-
ing factors, denoted as 𝐁𝙻 and 𝐁𝚁 for the left and right, respectively. The
corresponding augmented Lagrangian function is expressed as follows

𝙱(𝐁𝙻,𝐁𝚁,𝐊,𝐃) =
‖

‖

‖

 − [[𝐁𝙻,𝐁𝚁,𝐊]]‖‖
‖

2

𝐹
+
𝜌𝙾
2
‖

‖

‖

𝐁𝙻 − 𝐀(𝑙−1)
⊙2 + 𝐔(𝑙−1)‖

‖

‖

2

𝐹

+
𝜌𝙱
2
‖

‖

‖

𝐁𝙻 − 𝐁𝚁 + 𝐃‖‖
‖

2

𝐹
−
𝜌𝙱
2
‖

‖

‖

𝐃‖‖
‖

2

𝐹
. (41)

Here, 𝜌𝙱 > 0 is a regularization parameter, and 𝐃 ∈ R𝑀2×𝑅 denotes
the (scaled) dual variable. To find the optimal solution of (41), the
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optimization process involves an iterative loop, with the 𝑖th iteration
step as follows:

𝐊(𝑙,𝑖) =
[


]

(3)

(

𝐁(𝑙,𝑖−1)
𝙻

⊙ 𝐁(𝑙,𝑖−1)
𝚁

)(

[(

𝐁(𝑙,𝑖−1)
𝙻

)⊤𝐁(𝑙,𝑖−1)
𝙻

]

⋇
[(

𝐁(𝑙,𝑖−1)
𝚁

)⊤𝐁(𝑙,𝑖−1)
𝚁

]

)#
, (42a)

𝐁(𝑙,𝑖)
𝙻

=
(

[


]

(1)𝐏
(𝑙,𝑖−1)
𝚁

+ 𝜌𝙾
(

𝐀(𝑙−1)
⊙2 − 𝐔(𝑙−1))

+ 𝜌𝙱
(

𝐁(𝑙,𝑖−1)
𝚁

− 𝐃(𝑙,𝑖−1))
)(

(

𝐏(𝑙,𝑖−1)
𝚁

)⊤𝐏(𝑙,𝑖−1)
𝚁

+ (𝜌𝙾 + 𝜌𝙱)𝐈𝑅
)−1

, (42b)

𝐁(𝑙,𝑖)
𝚁

=
(

[


]

(2)𝐏
(𝑙,𝑖−1)
𝙻

+ 𝜌𝙱
(

𝐁(𝑙,𝑖−1)
𝙻

− 𝐃(𝑙,𝑖−1))
)

(

(

𝐏(𝑙,𝑖−1)
𝙻

)⊤𝐏(𝑙,𝑖−1)
𝙻

+ 𝜌𝙱𝐈𝑅
)−1

, (42c)

𝐃(𝑙,𝑖) = 𝐃(𝑙,𝑖−1) + 𝐁(𝑙,𝑖)
𝙻

− 𝐁(𝑙,𝑖)
𝚁
, (42d)

here 𝐏(𝑙,𝑖−1)
𝙻

= 𝐊(𝑙,𝑖) ⊙ 𝐁(𝑙,𝑖−1)
𝙻

and 𝐏(𝑙,𝑖)
𝚁

= 𝐊(𝑙,𝑖) ⊙ 𝐁(𝑙,𝑖−1)
𝚁

. At the initial
tep (𝑖 = 0), we set 𝐊(𝑙,0) = 𝐊(𝑙−1) and 𝐁(𝑙,0)

𝙻
= 𝐁(𝑙,0)

𝚁
= 𝐁(𝑙−1). The iterative

rocedure (42) continues until convergence or until stopping criteria
re met after 𝐼stop iterations. Then, we align the two ‘‘𝐁’’ matrices as

(𝑙)
𝐁 = argmin

𝜦𝐁

‖

‖

‖

𝐁(𝑙,𝐼stop)
𝙻

− 𝐁(𝑙,𝐼stop)
𝚁

𝜦𝐁
‖

‖

‖𝐹
, (43)

here 𝜦𝐁 is a diagonal matrix. At the end, we take 𝐊(𝑙) = 𝐊(𝑙,𝐼stop) and
(𝑙) = 0.5

(

𝐁(𝑙,𝐼stop)
𝙻

+ 𝐁(𝑙,𝐼stop)
𝚁

𝜦(𝑙)
𝐁
)

.2

.2.2. Updates of 𝐀(𝑙) and 𝜮(𝑙)

We recast (P1.2) into the following ADMM form

argmin
𝐀𝙻 ,𝐀𝚁 ,𝜮

‖

‖

‖

 − [[𝐀𝙻,𝐀𝚁,𝜮]]‖‖
‖

2

𝐹
+
𝜌𝙾
2
‖

‖

‖

𝐁(𝑙) − 𝐀⊙2 + 𝐔(𝑙−1)‖
‖

‖

2

𝐹

subject to 𝐀𝙻 = 𝐀𝚁. (44)

In a way similar to (42), we employ an iterative procedure to update
𝐀(𝑙) and 𝜮(𝑙). Starting at 𝑗 = 0, we initialize 𝜮(𝑙,0) = 𝜮(𝑙−1), and obtain
𝐀(𝑙,0)
𝙻

and 𝐀(𝑙,0)
𝚁

from 𝐀(𝑙,0)
⊙2 which is computed as follows

(𝑙,0)
⊙2 =

(

[


]⊤
(3)𝜮

(𝑙,0) + 𝜌𝙾
(

𝐁(𝑙) + 𝐔(𝑙−1))
)(

(

𝜮(𝑙,0))⊤𝜮(𝑙,0) + 𝜌𝙾𝐈
)−1

. (45)

Specifically, we know that 𝐀(𝑙,0)
⊙2 = 𝐀(𝑙,0)

𝙻
⊙ 𝐀(𝑙,0)

𝚁
leads to

𝐀(𝑙,0)
⊙2 (∶, 𝑟) = vec

{

𝐀(𝑙,0)
𝙻

(∶, 𝑟)𝐀(𝑙,0)
𝚁

(∶, 𝑟)⊤
}

with 1 ≤ 𝑟 ≤ 𝑅. (46)

Therefore, we can obtain the (normalized) 𝑟th column of 𝐀(𝑙,0)
𝙻

and
𝐀(𝑙,0)
𝚁

from the most dominant left and right singular vectors of reshape
{

𝐀(𝑙,0)
⊙2 (∶, 𝑟), [𝑀,𝑀]

}

, respectively.
For short, we denote 𝐅(𝑙) = 𝐁(𝑙) + 𝐔(𝑙−1), 𝐐(𝑙,𝑗−1)

𝙻
= 𝜮(𝑙,𝑗) ⊙ 𝐀(𝑙,𝑗−1)

𝙻
,

𝐐(𝑙,𝑗−1)
𝚁

= 𝜮(𝑙,𝑗) ⊙ 𝐀(𝑙,𝑗−1)
𝚁

, 𝐆(𝑙,𝑗−1)
𝙻

= (𝐈𝑅 ⊙ 𝐀(𝑙,𝑗−1)
𝙻

) ⊗ 𝐈𝑀 , 𝐆(𝑙,𝑗−1)
𝚁

=

(𝐈𝑅 ⊙𝐀(𝑙,𝑗−1)
𝚁

)⊗ 𝐈𝑀 , 𝐓(𝑙,𝑗−1)
𝙻

= reshape{𝐆(𝑙,𝑗−1)
𝙻

vec{𝐅(𝑙)},[𝑀,𝑅]}, 𝐓(𝑙,𝑗−1)
𝚁

=
reshape{𝐆(𝑙,𝑗−1)

𝚁
vec{𝐅(𝑙)}, [𝑀,𝑅]}, and read

𝜮(𝑙,𝑗) =
[


]

(3)

(

𝐀(𝑙,𝑗−1)
𝙻

⊙ 𝐀(𝑙,𝑗−1)
𝚁

)(

[(

𝐀(𝑙,𝑗−1)
𝙻

)⊤𝐀(𝑙,𝑗−1)
𝙻

]

⋇
[(

𝐀(𝑙,𝑗−1)
𝚁

)⊤𝐀(𝑙,𝑗−1)
𝚁

]

)#
, (47a)

𝐀(𝑙,𝑗)
𝙻

=
(

[


]

(1)𝐐
(𝑙,𝑗−1)
𝚁

+ 𝜌𝙾𝐓
(𝑙,𝑗−1)
𝚁

+ 𝜌𝙰
(

𝐀(𝑙,𝑗−1)
𝚁

− 𝐄(𝑙,𝑗−1))
)

(

𝐇(𝑙,𝑗−1)
𝚁

+ 𝜌𝙰𝐈𝑅
)−1

, (47b)

𝐀(𝑙,𝑗)
𝚁

=
(

[


]

(2)𝐐
(𝑙,𝑗−1)
𝙻

+ 𝜌𝙾𝐓
(𝑙,𝑗−1)
𝙻

+ 𝜌𝙰
(

𝐀(𝑙,𝑗−1)
𝙻

− 𝐄(𝑙,𝑗−1))
)

(

𝐇(𝑙,𝑗−1)
𝙻

+ 𝜌𝙰𝐈𝑅
)−1

, (47c)

2 In the initial stage, the iterative procedure (42) may require a large
umber of iterations to converge or may not converge at all. In such cases, the
wo matrices 𝐁𝙻 and 𝐁𝚁 might not be identical or closely aligned each other.
he step (43) is essential to compute their average and determine the value
f the matrix 𝐁(𝑙).
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𝐄(𝑙,𝑗) = 𝐄(𝑙,𝑗−1) + 𝐀(𝑙,𝑗)
𝙻

− 𝐀(𝑙,𝑗)
𝚁

. (47d)

here 𝜌𝙰 and 𝐄 play the same role as 𝜌𝙱 and 𝐃 in (41), respectively,
nd
(𝑙,𝑗−1)
𝙻

=
(

𝐐(𝑙,𝑗−1)
𝙻

)⊤𝐐(𝑙,𝑗−1)
𝙻

+ 𝜌𝙾
(

𝐆(𝑙,𝑗−1)
𝙻

)⊤𝐆(𝑙,𝑗−1)
𝙻

, (48)
(𝑙,𝑗−1)
𝚁

=
(

𝐐(𝑙,𝑗−1)
𝚁

)⊤𝐐(𝑙,𝑗−1)
𝚁

+ 𝜌𝙾
(

𝐆(𝑙,𝑗−1)
𝚁

)⊤𝐆(𝑙,𝑗−1)
𝚁

. (49)

nce (47) meets the stopping criteria, we estimate 𝜦(𝑙)
𝐀 using a way

imilar to (43), and then, set 𝜮(𝑙) = 𝜮(𝑙,𝐽stop) and 𝐀(𝑙) = 0.5
(

𝐀(𝑙,𝐽stop)
𝙻

+
(𝑙,𝐽stop)
𝚁

𝜦(𝑙)
𝐀
)

.

.3. Stopping criteria and parameter selection

Our method consists of an outer loop, and two inner loops (42)
nd (47). We set their maximum number of iterations to predefined
alues: 𝐿stop = 100, 𝐼stop = 10, and 𝐽stop = 10, respectively. Following
he guidelines in [39], we adopt the following stopping criteria, which
ely on the primal and dual residuals

𝐕cur − 𝐙cur
‖

‖

‖𝐹
≤ 𝜀pri,

‖

‖

‖

𝜌(𝐙cur − 𝐙old)
‖

‖

‖𝐹
≤ 𝜀dual, (50)

here ‘‘cur’’ and ‘‘old’’ represent the current and old estimates, re-
pectively, and 𝜀pri = 𝜖rel max

{

‖𝐕cur‖2, ‖𝐙cur‖2
}

+ 𝜖abs
√

length(𝐕cur ) and
𝜀dual = 𝜖rel‖𝜌𝐒cur‖2 +𝜖abs

√

length(𝐒cur ). Here, 𝜖abs > 0 and 𝜖rel > 0
epresent the absolute and relative tolerance, respectively. The primal
ariables are denoted by 𝐕 and 𝐙, where 𝐕 includes (𝐁,𝐁𝙻,𝐀𝙻), and 𝐙
ncludes (𝐀⊙2,𝐁𝚁,𝐀𝚁). The dual variables (𝐔,𝐃,𝐄) are represented by
, while 𝜌 represents the regularization parameters (𝜌𝙾, 𝜌𝙱, 𝜌𝙰) and their
alue can be selected by applying the following adaptive rule at each
teration

(𝓁+1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜅 𝜌(𝓁) if ‖‖
‖

𝐕cur − 𝐙cur
‖

‖

‖𝐹
> 𝜇‖‖

‖

𝜌(𝓁)(𝐙cur − 𝐙old)
‖

‖

‖𝐹
,

𝜌(𝓁)∕𝜅 if ‖‖
‖

𝜌(𝓁)(𝐙cur − 𝐙old)
‖

‖

‖𝐹
> 𝜇‖‖

‖

𝐕cur − 𝐙cur
‖

‖

‖𝐹
,

𝜌(𝓁) otherwise.

(51)

In practice, typical choices can be 𝜇 = 10, 𝜅 = 2, and 𝜌(0) =
𝜌(0)
𝙾

= 𝜌(0)
𝙱

= 𝜌(0)
𝙰

= 1, while 𝜖abs and 𝜖rel can be chosen from the ranges
[10−6; 10−3] and [10−4; 10−2], respectively. For further details, please
refer to [39].

3.4. Performance analysis

3.4.1. Computational complexity
For short, we assume 𝑁1 = 𝑁2 = 𝑁 . TenSOFO involves two inner

ADMM loops, denoted as (42) and (47). In loop (42), the computation
includes a pseudo-inverse and two inverse operations of 𝑅 × 𝑅 ma-
trices, resulting in a cost of (𝑅3) flops. Additionally, the Khatri–Rao
products requires a cost of (max{𝑀2, 𝑁}𝑀2𝑅) flops. Consequently,
each iteration incurs a total cost of (𝑀4𝑅2𝑁) flops for updating
𝐊(𝑙,𝑖), 𝐁(𝑙,𝑖)

𝙻
, 𝐁(𝑙,𝑖)

𝚁
, and 𝐃(𝑙,𝑖). Thus, the computational complexity of (42)

is (𝐼stop𝑀4𝑅2𝑁) flops. At the end of the loop (42), TenSOFO also
involves the scaling step that requires (𝑀2𝑅) flops. Loop (47) shares
a similar update rule with (42) but deals with  ∈ R𝑀×𝑀×𝑁 of smaller
size, leading to a complexity of (𝐽stop𝑀2𝑅2𝑁) flops. To sum up, the
verall computational complexity of TenSOFO is 

(

𝐿stop (𝐼stop𝑀2 +
stop)𝑀2𝑅2𝑁

)

flops.

.4.2. Convergence analysis
The convergence behavior of TenSOFO is summarized in the follow-

ng theorem.

heorem 1. Assume that covariance matrices and quadricovariance
ensors of data observations are bounded in Frobenius norm. If 𝜌𝙾 > 1 and
𝙰, 𝜌𝙱 > 0, the sequence {𝐁(𝑙),𝐊(𝑙),𝐀(𝑙),𝜮(𝑙),𝐔(𝑙)} generated by TenSOFO in
lgorithm 1 converges to a stationary point of 𝙾(⋅) when 𝑙 goes to infinity.
roof. See Appendix. □
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4. Convolutive BSS: Type-2 BTD based method

In this section, we begin by establishing a connection between
convolutive BSS and a constrained type-2 block term decomposition
(BTD) factorization. Subsequently, we introduce an efficient method
called TCBSS, designed for dealing with this specific BTD, and, by
extension, convolutive BSS tasks.

4.1. Link between convolutive BSS and Type-2 BTD

As suggested in [3,40], we can reformulate the convolutive data
model (1) into an instantaneous one as follows

𝐱[𝑡] = 𝐀𝐬[𝑡], (52)

where 𝐱[𝑡] =
[

𝑥1[𝑡],… , 𝑥1[𝑡−𝐿′+1],… , 𝑥𝑀 [𝑡],… , 𝑥𝑀 [𝑡−𝐿′+1]
]⊤ ∈ R𝑀𝐿′

and 𝐬[𝑡] =
[

𝑠1[𝑡],… , 𝑠1[𝑡−(𝐿+𝐿′)+1],… , 𝑠𝑅[𝑡],… , 𝑠𝑅[𝑡−(𝐿+𝐿′)+1]
]⊤ ∈

R𝑅(𝐿+𝐿′) with an extension factor for data observations 𝐿′ ≥ 1, and the
new mixture 𝐀 ∈ R𝑀𝐿′×𝑅(𝐿+𝐿′) is given by

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐀11 … 𝐀1𝑅

⋮ ⋱ ⋮

𝐀𝑀1 … 𝐀𝑀𝑅

⎤

⎥

⎥

⎥

⎥

⎦

with 𝐀𝑚𝑟 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑚𝑟[0] … 𝑎𝑚𝑟[𝐿] … 0
⋱ ⋱ ⋱

0 𝑎𝑚𝑟[0] … 𝑎𝑚𝑟[𝐿]

⎤

⎥

⎥

⎥

⎦

.

(53)

For short, we denote 𝐿add = 𝐿 + 𝐿′.
We assume that individual source signals are temporally coherent

while maintaining their mutual independence. Specifically, the correla-
tion between the two sources 𝑠𝑖 and 𝑠𝑗 (with 𝑖 ≠ 𝑗) follows E

{

𝑠𝑖[𝑡]𝑠𝑗 [𝑡−
]
}

= 0 for all 𝜏. In such cases, the correlation matrix corresponding
o (52) is expressed as

𝐱[𝑡, 𝜏] = E
{

𝐱[𝑡]𝐱[𝑡 − 𝜏]⊤
}

= 𝐀blkdiag
({

𝐑𝐬𝑟
[𝑡, 𝜏]

}𝑅
𝑟=1

)

𝐀⊤. (54)

For multiple time lags {𝜏𝑖}𝑁𝑖=1, we obtain

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐑𝐱[𝑡, 𝜏1] = 𝐀blkdiag
({

𝐑𝐬𝑟
[𝑡, 𝜏1]

}𝑅
𝑟=1

)

𝐀⊤,

𝐑𝐱[𝑡, 𝜏2] = 𝐀blkdiag
({

𝐑𝐬𝑟
[𝑡, 𝜏2]

}𝑅
𝑟=1

)

𝐀⊤,

⋮

𝐑𝐱[𝑡, 𝜏𝑁 ] = 𝐀blkdiag
({

𝐑𝐬𝑟
[𝑡, 𝜏𝑁 ]

}𝑅
𝑟=1

)

𝐀⊤.

(55)

Particularly by stacking
{

𝐑𝐱[𝑡, 𝜏𝑖]
}𝑁
𝑖=1 and

{

𝐑𝐬[𝑡, 𝜏𝑖]
}𝑁
𝑖=1 consecutively

within the third mode of  ∈ R𝑀𝐿′×𝑀𝐿′×𝐾 and  ∈ R𝑅𝐿add×𝑅𝐿add×𝑁 ,
we derive the following representation

 =  ×1 𝐀 ×2 𝐀 =
𝑅
∑

𝑟=1
𝐬𝑟

×1 𝐀𝑟 ×2 𝐀𝑟, (56)

where 𝐀𝑟 =
[

𝐀⊤1𝑟,𝐀
⊤
2𝑟,… ,𝐀⊤𝑀𝑟

]⊤ is the 𝑟th block column of 𝐀 and
𝐬𝑟
(∶, ∶, 𝑖) = 𝐑𝐬𝑟

(𝑡, 𝜏𝑖). See Fig. 2 for an illustration. We can see that (56)
epresents a variant of the type-2 BTD in (9), where the two loading fac-
ors are constrained to be identical. Interestingly, (56) is also essentially
nique under mild conditions [37], as highlighted by Proposition 3.
articularly, the estimate �̂� of 𝐀 is unique up to trivial indeterminacies,
.e., �̂� = 𝐀𝜫𝜦 where 𝜫 is a block permutation matrix and 𝜦 is a square
onsingular block-diagonal matrix.

roposition 3. If 𝑀𝐿′ ≥ 𝑅𝐿add, 𝑁 ≥ 3, and  is generic,3 then (56) is
essentially unique.

3 We call a tensor generic when its elements are drawn from a continuous
robability density function.
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Algorithm 2: TCBSS

Input:
{

𝐑𝐱[𝑡, 𝜏𝑖]
}𝑁
𝑖=1

Output: Loading factor 𝐀 and core tensor 
Initialization:

• set 𝑙 = 1, 𝛼(0) = 1, 𝐔(0) = 𝟎𝑀𝐿′×𝑅𝐿add
, and 𝐙(0) = 𝟎𝑀𝐿′×𝑅𝐿add

• generate random matrices 𝐁(0) ∈ R𝑀𝐿′×𝑅𝐿add and (0)
𝐬𝑟

∈ R𝐿add×𝐿add×𝑁

while stopping criteria are not met do

𝐀(𝑙) = argmin
𝐀

{

‖

‖

‖

 −
𝑅
∑

𝑟=1
(𝑙−1)
𝐬𝑟

×1 𝐀𝑟 ×2 𝐁(𝑙−1)
𝑟

‖

‖

‖

2

𝐹

+
𝜌
2
‖

‖

‖

𝐁(𝑙−1) − 𝐀 + 𝐔(𝑙−1)‖
‖

‖

2

𝐹

}

(P2.1)

𝐁(𝑙) = argmin
𝐁

{

‖

‖

‖

 −
𝑅
∑

𝑟=1
(𝑙−1)
𝐬𝑟

×1 𝐀(𝑙)
𝑟 ×2 𝐁𝑟

‖

‖

‖

2

𝐹

+
𝜌
2
‖

‖

‖

𝐁 − 𝐀(𝑙) + 𝐔(𝑙−1)‖
‖

‖

2

𝐹

}

(P2.2)

(𝑙) = argmin


‖

‖

‖

 −
𝑅
∑

𝑟=1
𝐬𝑟

×1 𝐀(𝑙)
𝑟 ×2 𝐁(𝑙)

𝑟
‖

‖

‖

2

𝐹
(P2.3)

𝐔(𝑙) = 𝐙(𝑙−1) + 𝐁(𝑙) − 𝐀(𝑙) (P2.4)

𝛼(𝑙) =
1 +

√

1 + 4(𝛼(𝑙−1))2

2
(P2.5)

𝐙(𝑙) = 𝐔(𝑙) + 𝛼(𝑙−1) − 1
𝛼(𝑙)

(

𝐔(𝑙) − 𝐔(𝑙−1)) (P2.6)

𝑙 = 𝑙 + 1

end

This result is a corollary of Theorem 6.1 in [37]. By employing
the constrained type-2 BTD analysis, we can directly identify the mix-
ing process in convolutive BSS. In next subsection, we introduce an
effective optimization framework designed to deal with (56) efficiently.

4.2. Optimization framework

The type-2 BTD factorization (56) can be represented by

min
,𝐀,𝐁

‖

‖

‖

 −
𝑅
∑

𝑟=1
𝐬𝑟

×1 𝐀𝑟 ×2 𝐁𝑟
‖

‖

‖

2

𝐹
subject to 𝐀 = 𝐁, (57)

where 𝐀 = [𝐀1,𝐀2,… ,𝐀𝑅] and 𝐁 = [𝐁1,𝐁2,… ,𝐁𝑅]. Here, we can for-
mulate the augmented Lagrangian function for the minimization (57)
as follows

(,𝐀,𝐁,𝐔) = min
,𝐀,𝐁

‖

‖

‖

−
𝑅
∑

𝑟=1
𝐬𝑟

×1𝐀𝑟 ×2𝐁𝑟
‖

‖

‖

2

𝐹
+
𝜌
2
‖

‖

‖

𝐁−𝐀+𝐔‖‖
‖

2

𝐹
−
𝜌
2
‖

‖

‖

𝐔‖‖
‖

2

𝐹
,

(58)

where 𝐔 is the ‘‘scaled’’ dual variable and 𝜌 > 0 is a regularization
parameter. In this work, we propose Algorithm 2 to find the stationary
point of (⋅). As the three sub-problems (P2.1), (P2.2) and (P2.3)
are quadratic, their closed-form solutions 𝐀(𝑙), 𝐁(𝑙), and (𝑙) at the 𝑙th
teration are determined as

(𝑙) =
(

[


]

(1)
(

𝐖(𝑙)
𝐴
)⊤ + 𝜌

(

𝐁(𝑙−1) + 𝐔(𝑙−1))
)(

𝐖(𝑙)
𝐴
(

𝐖(𝑙)
𝐴
)⊤ + 𝜌𝐈𝑅𝐿add

)−1
,

(59)

(𝑙) =
(

[


]

(2)
(

𝐖(𝑙)
𝐵
)⊤ + 𝜌

(

𝐔(𝑙−1) − 𝐀(𝑙))
)(

𝐖(𝑙)
𝐵
(

𝐖(𝑙)
𝐵
)⊤ + 𝜌𝐈𝑅𝐿add

)−1
,

(60)
[

[

(𝑙)
𝐬1

]

(3),
[

(𝑙)
𝐬2

]

(3),… ,
[

(𝑙)
𝐬𝑅

]

(3)

]

=
[


]

(3)

(

(

𝐁(𝑙) ⊠ 𝐀(𝑙))⊤
)#
, (61)
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Fig. 2. TCBSS – Constrained Type-2 BTD based Convolutive BSS. By extracting second-order (SO) statistics of observations and source signals, we obtain sets of covariance
matrices {𝐑𝐱[𝑡, 𝜏𝑛]}𝑁𝑛=1 and {𝐑𝐬𝑟

[𝑡, 𝜏𝑛]}
𝑁,𝑅
𝑛,𝑟=1. These matrices are then modeled within a constrained type-2 block term decomposition framework, enforcing two tensor factors to be

identical. By performing the BTD decomposition of , we derive the mixing matrix 𝐀.
where 𝐖(𝑙)
𝐴 and 𝐖(𝑙)

𝐵 are given by

𝐖(𝑙)
𝐴 =

[

[

(𝑙−1)
𝐬1

×2 𝐁
(𝑙−1)
1

]⊤
(1),… ,

[

(𝑙−1)
𝐬𝑅

×2 𝐁
(𝑙−1)
𝑅

]⊤
(1)

]⊤
, (62)

𝐖(𝑙)
𝐵 =

[

[

(𝑙−1)
𝐬1

×1 𝐀
(𝑙)
1
]⊤
(2),… ,

[

(𝑙−1)
𝐬𝑅

×1 𝐀
(𝑙)
𝑅
]⊤
(2)

]⊤
. (63)

Inspired by the work [42], we introduce two auxiliary variables 𝐙(𝑙) and
𝛼𝑙 to accelerate the iteration procedure. The inclusion of (P2.4), (P2.5),
and (P2.6) results in an accelerated augmented Lagrangian variant
which can offer superior speed and estimation accuracy, as compared
with state-of-the-art methods, please see Fig. 8 for an example.

4.3. Stopping criteria and parameter selection

Our procedure stops upon convergence, reaching the maximum
number of iterations 𝐼stop = 100, or meeting the following criteria
‖

‖

‖

𝐀(𝑙) − 𝐁(𝑙)‖
‖

‖𝐹
≤ 𝜀pri and ‖

‖

‖

𝜌
(

𝐀(𝑙) − 𝐀(𝑙−1))‖
‖

‖𝐹
≤ 𝜀dual, (64)

where 𝜀pri = 𝜖rel max
{

‖𝐀(𝑙)
‖2, ‖𝐁(𝑙)

‖2
}

+ 𝜖abs
√

length(𝐀(𝑙)) and 𝜀dual =
𝜖rel‖𝜌𝐔(𝑙)

‖2 +𝜖abs
√

length(𝐀(𝑙)). Here, 𝜖abs > 0 and 𝜖rel > 0 represent
the absolute and relative tolerance, respectively. In practice, we can
set 𝜌 = 1, 𝜖abs = 10−4 and 𝜖rel = 10−2 for reasonable performance. To
speed up the convergence rate, an adaptive parameter selection for 𝜌
can be employed, as described in (51).

4.4. Performance analysis

4.4.1. Computational complexity
At each iteration, the updates for both 𝐀(𝑙) in (59) and 𝐁(𝑙) in (60)

share the same computational process. This requires 
(

𝑀2𝐿′2𝐿add𝑅𝐾+
𝑀𝐿′𝐿2

add𝑅
2𝐾 + 𝐿3

add𝑅
3) flops. For computing (𝑙) defined in (61),

the complexity is 
(

𝑀2𝐿′2𝐿2
add 𝑅𝐾+𝑀2𝐿′2𝑅𝐿2

add min(𝑀2𝐿′2, 𝑅𝐿2
add)

)

flops. The computations required for updating 𝐔(𝑙), 𝐙(𝑙), and 𝛼𝑙 are
relatively inexpensive, with respective complexities of (𝑀𝐿′𝑅𝐿add),
(𝑀𝐿′𝑅𝐿add), and (1). As mentioned in Proposition 3, satisfying the
uniqueness condition demands 𝑀𝐿′ ≥ 𝑅𝐿add. Accordingly, the overall
complexity of TCBSS is 

(

𝑀2𝐿′2 𝐿2
add𝑅max(𝐾,𝐿2

add𝑅) +𝐿
3
add𝑅

3) flops
at each iteration.

4.4.2. Convergence analysis
The convergence behavior of TCBSS is summarized in the following

theorem.

Theorem 2. Assume that covariance matrices of data observations are
bounded in Frobenius norm. If 𝜌 > 1, the sequence

{

(𝑙),𝐀(𝑙),𝐁(𝑙),𝐔(𝑙)}

generated by TCBSS in Algorithm 2 converges to a stationary point of 𝙾(⋅)
when 𝑙 goes to infinity.
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Proof . Proof of Theorem 2 can be obtained by applying the same
mathematical framework as presented in Section 3.4.2 for analyzing
the convergence behavior of TenSOFO. □

4.5. Extension

In this subsection, we introduce a variant of TCBSS that integrates
both SO and FO statistics.

We begin by computing the FO statistic of 𝐱[𝑡] in (52) as follows

𝐂𝐱[𝑡, {𝝉}] =
(

𝐀⊙ 𝐀
)

blkdiag
({

𝐂𝐬𝑟 [𝑡, {𝝉}]
}𝑅
𝑟=1

)(

𝐀⊙ 𝐀
)⊤. (65)

By incorporating multiple time lags {𝜏𝑖}
𝑁2
𝑖=1, we derive a set of FO matri-

ces {𝐂𝐱[𝑡, {𝝉𝑛}]}
𝑁2
𝑛=1. These matrices are then stacked into a third-order

tensor  in the following manner

 = 𝐂𝐱[𝑡, {𝝉1}]⊞ 𝐂𝐱[𝑡, {𝝉2}]⋯⊞ 𝐂𝐱[𝑡, {𝝉𝑁2
}]. (66)

Similar to the tensor  in (56),  also admits the type-2 BTD factor-
ization

 =  ×1 𝐀⊙2 ×2 𝐀⊙2 =
𝑅
∑

𝑟=1
𝐬𝑟 ×1 (𝐀𝑟 ⊙ 𝐀𝑟) ×2 (𝐀𝑟 ⊙ 𝐀𝑟), (67)

where  = blkdiag(𝐬1
,𝐬2

,… ,𝐬𝑅
) with 𝐬𝑟

(∶, ∶, 𝑛) = 𝐂𝐬𝑟
[𝑡, {𝝉𝑛}], and

𝐀𝑟 is the 𝑟th block column of 𝐀. Accordingly, we can represent the
convolutive BSS problem in the lens of a joint (coupled) type-2 BTD
decomposition

 =  ×1 𝐀 ×2 𝐀 and  =  ×1 𝐀⊙2 ×2 𝐀⊙2, (68)

where 𝐀⊙2 = 𝐀⊙𝐀, and thus, formulate the following ADMM optimiza-
tion

min
,𝐀,,𝐁

{

‖

‖

‖

 −  ×1 𝐀 ×2 𝐀
‖

‖

‖

2

𝐹
+ ‖

‖

‖

 − ×1 𝐃 ×2 𝐃
‖

‖

‖

2

𝐹

}

subject to 𝐃 = 𝐀⊙2. (69)

In this work, we can apply the same optimization framework of
TenSOFO in Algorithm 1 to solve (69). Particularly at the 𝑙th iteration,
we update parameters of interest as follows
{

(𝑙),𝐃(𝑙)} = argmin
,𝐁

{

‖

‖

‖

 − ×1 𝐃 ×2 𝐃
‖

‖

‖

2

𝐹
+
𝛾
2
‖

‖

‖

𝐃 − 𝐀(𝑙−1)
⊙2 +𝐐(𝑙−1)‖

‖

‖

2

𝐹

}

,

(70)
{

(𝑙),𝐀(𝑙)} = argmin
,𝐀

{

‖

‖

‖

 −  ×1 𝐀 ×2 𝐀
‖

‖

‖

2

𝐹
+
𝛾
2
‖

‖

‖

𝐃(𝑙) − 𝐀⊙2 +𝐐(𝑙−1)‖
‖

‖

2

𝐹

}

,

(71)

𝐐(𝑙) = 𝐐(𝑙−1) + 𝐃(𝑙) − 𝐀(𝑙)
⊙2, (72)
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where 𝐐 is the (scaled) dual variable and 𝛾 is a regularization pa-
rameter. Sub-problems (70) and (71) can be effectively addressed by
incorporating a simple regularization term ‖ ⋅ ‖2𝐹 into the original
version of TCBSS presented in Algorithm 2. For example, in the case of
sub-problem (70), the closed-form solution of  keeps the same form
as  in (61) during each iteration. Meanwhile, the solution for 𝐃 is
adjusted from (59) and takes the following form

𝐃(𝑙,𝑖)
𝙻

=
(

[


]

(1)
(

𝐖(𝑙)
𝙻

)⊤ + 𝜌
(

𝐃(𝑙,𝑖−1)
𝚁

+ 𝐏(𝑙,𝑖−1)) + 𝛾
(

𝐀(𝑙−1)
⊙2 −𝐐(𝑙−1))

)

(

𝐖(𝑙)
𝙻

(

𝐖(𝑙)
𝙻

)⊤ + (𝜌 + 𝛾)𝐈𝑅𝐿add

)−1
.

(73)

Here, the matrices 𝐃(𝑙,𝑖)
𝙻

, 𝐃(𝑙,𝑖−1)
𝚁

, 𝐖(𝑙,𝑖)
𝙻

, and 𝐖(𝑙,𝑖)
𝚁

play the same role of
(𝑙), 𝐁(𝑙−1), 𝐖(𝑙)

𝐴 , and 𝐖(𝑙)
𝐵 in Algorithm 2.

. Numerical experiments

.1. Performance assessment for TenSOFO

We evaluate the performance of TenSOFO in two aspects: (i) its
ffectiveness for joint INDSCAL decomposition, and (ii) its application
o address BSS using SO and FO statistics.

.1.1. INDSCAL decomposition
We apply TenSOFO to compute joint INDSCAL decomposition of

wo symmetric tensors  ∈ R𝑀×𝑀×𝑁 and  ∈ R𝑀2×𝑀2×𝑁 sharing the
same rank 𝑅:

 = true + =
[[

𝐀,𝐀,𝜮
]]

+, (Tensor 1)

 = true + =
[[

𝐀⊙2,𝐀⊙2,𝐊
]]

+ . (Tensor 2)

Here, the tensor factors of interest 𝐀 ∈ R𝑀×𝑅,𝜮 ∈ R𝑁×𝑅 and 𝐊 ∈ R𝑁×𝑅

are generated as Gaussian matrices with zero-mean and unit-variance
entries.  and  represent random Gaussian noises sharing the
same SNR level, i.e., ‖‖𝐹 ∕‖true‖𝐹 = ‖‖𝐹 ∕‖true‖𝐹 = 10−

SNR
20 .

o evaluate the estimation accuracy, we measure the following relative
rror (RE) metric

E(𝐀,𝐀est ) = min
𝜫 ,𝜦

‖

‖

‖

𝐀 − 𝐀est𝜫𝜦‖

‖

‖𝐹

/

‖

‖

‖

𝐀‖‖
‖𝐹
, (74)

where 𝐀est refers to the estimate, 𝜫 and 𝜦 represent the permutation
and scaling matrices, respectively.

In this experiment, we set the values of 𝑀 and 𝑁 to 5 and 100,
respectively. We consider two cases of the tensor rank 𝑅: one with
𝑅 = 3 (less than 𝑀) and another with 𝑅 = 7 (greater than 𝑀). The
performance of TenSOFO is conducted across varying SNR levels within
the range [0, 50] dB. Fig. 3 illustrates the performance comparison
between TenSOFO and the classical INDSCAL method (i.e., CP-ALS)
for each  and . The experimental results indicate that TenSOFO
performs effectively in both cases, with better performance at the
same SNR level when 𝑅 < 𝑀 . Moreover, the joint decomposition
significantly improves the accuracy of estimating 𝐀 as compared to the
ndividual decomposition approach. The improved performance of Ten-
OFO in estimating 𝐀 is primarily attributed to its joint decomposition
pproach. Since tensors  and  both contain information about 𝐀,
heir integration simulates the beneficial effect of regularization and
ata augmentation for both  and . Consequently, results obtained
hrough joint INDSCAL decomposition consistently outperform those
rom individual decompositions of  and . Furthermore, the proposed
DMM optimization also contributes to improved convergence rate and
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stimation accuracy as compared to the standard ALS approach.
.1.2. Instantaneous BSS
We then demonstrate the effectiveness of TenSOFO for instanta-

eous BSS tasks in comparison with several widely-used BSS algo-
ithms, namely SOBI [30], JADE [29], SOBIUM [13], FOOBI [12], and
BSS-LL1 (using segmentation) [10]. Since SOBI, JADE, and TBSS-LL1
re not optimally designed for handling underdetermined BSS tasks,
e abstain from conducting a performance comparison among them in

uch cases. In the following, we present two scenarios where TenSOFO
emonstrates advantages over the compared BSS algorithms.

In particular, we investigate the following BSS model

𝑀 ∋ 𝐱[𝑡] = 𝐀𝐬[𝑡] + 𝐧[𝑡], 𝑡 = 0, 1,… , 𝑇 − 1, (75)

here the noise vector is 𝐧[𝑡] ∼  (𝟎, 𝜎2𝑛𝐈𝑀 ) and the mixing matrix
∈ R𝑀×𝑅 is generated as a Gaussian matrix with zero-mean and

nit-variance entries. We explore two cases for the source matrix 𝐒 =
𝐬⊤1 , 𝐬

⊤
2 ,… , 𝐬⊤𝑅]

⊤ ∈ R𝑅×𝑇 : (i) each source signal 𝐬𝑟 results from convo-
luting a kernel/filter 𝐟𝑟 of length 𝐿𝑓 ≪ 𝑇 with a random coefficient
vector 𝐠𝑟 of length 𝑇 − 𝐿𝑓 + 1 (i.e., 𝐬𝑟 = 𝐟𝑟 ∗ 𝐠𝑟); and (ii) each source
signal 𝐬𝑟 is derived from filtering a non-Gaussian random process 𝐯𝑟
by a first-order autoregressive (AR) model with coefficient 𝜓𝑟, denoted
as 𝐬𝑟 = filter(𝐯𝑟,AR(1, 𝜓𝑟)). In the first case, 𝐟𝑟 and 𝐠𝑟 are generated as
normal (Gaussian) and folded-normal random vectors, respectively. The
filter length 𝐿𝑓 is set to 30. In the second case, we define the non-
Gaussian process for the 𝑟th source 𝐬𝑟 using a power of normal Gaussian
distribution (i.e., 𝐯𝑡(𝑖) = |𝑦𝑖|

𝑝 where 𝑦𝑖 ∼  (0, 1), 𝑝 > 1). Here, we set the
value of 𝑝 to 6, and we arrange the set of coefficients {𝜓𝑟}𝑅𝑟=1 to be
evenly distributed within the range [0.1, 0.9].4 The hyperparameters of
the compared BSS algorithms are kept at their default values. SOBI,
SOBIUM, and TenSOFO require a predefined number of time lags, we
set its value to 𝑁 = 5. To evaluate the estimation accuracy of the BSS
algorithms, we reuse the error metric RE(𝐀,𝐀est ) in (74).

In Fig. 4, the performance of BSS algorithms is illustrated for
the case 𝐬𝑟 = 𝐟𝑟 ∗ 𝐠𝑟. In the overdetermined BSS task (𝑅 < 𝑀), the
experimental results in Fig. 4(a) indicate that BSS algorithms utiliz-
ing second-order statistics, including SOBI, SOBIUM, and TenSOFO,
effectively reconstruct the mixing matrix 𝐀. The accuracy of their
estimation improves with higher SNR. Notably, TenSOFO demonstrates
slightly better estimation accuracy than SOBI and SOBIUM. Conversely,
two fourth-order (FO)-based BSS algorithms (JADE and FOOBI) and
tensor-based algorithm TBSS-LL1 exhibit worse performance. Fig. 4(b)
illustrates the performance of TenSOFO, SOBIUM and FOOBI for under-
determined BSS. We can see that TenSOFO and SOBIUM succeed, while
FOOBI fails in this task, consistent with the previous overdetermined
BSS task.

In Fig. 5, the performance of BSS algorithms is illustrated for the
second case where 𝐬𝑟 = filter(𝐯𝑟, AR(1, 𝜓𝑟)). The experimental results
in Fig. 5(a) indicate that when 𝑅 < 𝑀 , TenSOFO outperforms other
methods, providing better estimation accuracy when compared to the
second-best FOOBI at high SNR levels. JADE and TBSS-LL1 become
less effective, whereas SOBI and SOBIUM offer moderate performance
in this context. When 𝑅 > 𝑀 , both FOOBI and TenSOFO perform
well in underdetermined BSS, although their estimation accuracy is
lower than when dealing with 𝑅 < 𝑀 . The BSS algorithm using only
SO statistics, SOBIUM, is less effective than FOOBI and TenSOFO in
this case. In summary, the results presented in both Figs. 4 and 5
demonstrate that the proposed algorithm, TenSOFO, can leverage both
SO and FO statistics to enhance the BSS performance in scenarios where
algorithms using only SO or FO statistics may fail short.

4 In MATLAB, we employ the command ‘‘𝚕𝚒𝚗𝚜𝚙𝚊𝚌𝚎(0.1, 0.9, 𝑅)’’ to generate
a sequence of 𝑅 values for the set {𝜓𝑟}𝑅𝑟=1 (e.g., if 𝑅 = 3, then 𝜓1 = 0.1, 𝜓2 = 0.5,

and 𝜓3 = 0.9).
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Fig. 3. INDSCAL decomposition: data dimension 𝑀 = 5, number of tensor slices 𝑁 = 100, individual decomposition of  ( ),  ( ), and joint decomposition of both 
nd  ( ).
Fig. 4. Instantaneous BSS tasks with 𝐬𝑟 = 𝐟𝑟 ∗ 𝐠𝑟: The number of sensors 𝑀 = 5, data samples 𝑇 = 10000, and time lags 𝑁 = 5.
Fig. 5. Instantaneous BSS tasks with 𝐬𝑟 = filter(𝐯𝑟, AR(1, 𝜓𝑟)) with a non-Gaussian process 𝐯𝑟, the number of sensors 𝑀 = 5, data samples 𝑇 = 10000, and time lags 𝑁 = 5.
w

.1.3. Fetal electrocardiogram extraction via instantaneous BSS
In this experiment, we employ TenSOFO to extract the fetal electro-

ardiogram (fetal ECG) from cutaneous potential recordings acquired
rom the mother’s skin. This separation is crucial for analyzing the
ealth and condition of the fetus [43]. The ECG dataset used in our
nvestigation contains five abdominal and three thoracic recordings.5

5 Access the ECG recordings at: https://ftp.esat.kuleuven.be/pub/SISTA/
ata/biomedical/.
10
These signals were recorded using eight skin electrodes placed on
various regions of a pregnant woman’s body over a duration of 10
s, with a sampling frequency of 250 Hz. Fig. 6 illustrates the five
abdominal recordings used in this study.

As indicated in [44], ECG signals can be formulated using the
following linear model

𝐱[𝑡] = 𝐀𝐬[𝑡] + 𝐧[𝑡], 𝑡 = 0, 1,… , 𝑇 − 1, (76)

here 𝐱[𝑡] = [𝑥1[𝑡],… , 𝑥𝑀 [𝑡]]⊤ represents observations, 𝐬[𝑡] = [𝑠1[𝑡],… ,
𝑠 (𝑡)]⊤ denotes the underlying sources, 𝐀 ∈ R𝑀×𝑅 represents the
𝑅

https://ftp.esat.kuleuven.be/pub/SISTA/data/biomedical/
https://ftp.esat.kuleuven.be/pub/SISTA/data/biomedical/
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Fig. 6. Real ECG recordings obtained from the maternal abdominal region.
Fig. 7. ECG source separation using TenSOFO ( ) and Lowner-based method ( ): maternal heartbeats (above) and fetal heartbeats (below).
propagation from 𝑅 sources to 𝑀 electrodes, and 𝐧[𝑡] is the noise. Con-
sequently, the separation of fetal heartbeats from maternal heartbeats
in the ECG recordings can be seen as an instantaneous BSS task [44].

As the ground truth is not available and the effectiveness of the
Lowner technique has been demonstrated in [9] for this task, we follow
its experimental setup and compare our separation results against it.
Specifically, we use 05 recordings, each contains 500 data samples,
corresponding to electrodes located on the mother’s abdominal region.
These ECG recordings are normalized to unit norm. The Lowner-based
method requires no preprocessing and we keep their algorithmic pa-
rameters by default. For TenSOFO, we set the number of time lags 𝑁
o 3. The experimental results are depicted in Fig. 7. It is worth noting
hat, the fetal heart rate consistently appears higher than the mother’s
eart rate. Both methods successfully separate fetal heartbeats from
aternal heartbeats, with our method yielding similar results to the

owner technique.

.2. Performance assessment for TCBSS

We assess the performance of TCBSS by (i) analyzing its conver-
ence rate for type-2 BTD factorization and (ii) applying it to the
roblem of EMG decomposition, serving as an illustrative example of
onvolutive BSS.

.2.1. Type-2 BTD factorization
We demonstrate its effectiveness in the context of type-2 BTD

actorization. To illustrate this, we generate a third-order tensor  ∈
R𝑀×𝑀×𝐾 as follows

 =  𝑡𝑟 + 𝜎𝑛 =
𝑅
∑

𝑟=1
𝑟 ×1 𝐀𝑟 ×2 𝐀𝑟 + 𝜎𝑛 . (77)

ere, the elements of 𝑟 ∈ R𝐿×𝐿×𝐾 ,  ∈ R𝑀×𝑀×𝐾 , and 𝐀𝑟 ∈ R𝑀×𝐿
11

re derived from random Gaussian variables with zero mean and unit
Table 1
Running time of type-2 BTD algorithms.

Setup Method

ALS ALS+LSH ALS+ELSC TCBSS

𝑀 = 10, 𝐾 = 100, 𝑅 = 2,
𝐿 = 2 and 𝜎𝑛 = 10−2 0.22 (s) 0.24 (s) 0.25 (s) 0.17 (s)

𝑀 = 50, 𝐾 = 100, 𝑅 = 5,
𝐿 = 4 and 𝜎𝑛 = 10−2 0.36 (s) 0.39 (s) 0.43 (s) 0.28 (s)

variance. The parameter 𝜎𝑛 > 0 is introduced to control the noise level.
To measure the estimation accuracy, we use the following error metrics

ER( tr , est ) =
‖

‖

‖

 tr −  est
‖

‖

‖𝐹

/

‖

‖

‖

 tr
‖

‖

‖𝐹
, (78)

RE(𝐀tr ,𝐀est ) = min
𝜫 ,𝜦

‖

‖

‖

𝐀tr − 𝐀est𝜫𝜦‖

‖

‖𝐹

/

‖

‖

‖

𝐀tr
‖

‖

‖𝐹
, (79)

where  est , 𝐀est are the reconstructed tensor and loading factor, 𝜫 is a
block permutation matrix, and 𝜦 is a square nonsingular block-diagonal
matrix.

In this investigation, we consider two cases: a small tensor with
𝑀 = 10, 𝐾 = 100, 𝑅 = 2, 𝐿 = 2 and a larger one with 𝑀 =
50, 𝐾 = 100, 𝑅 = 5, 𝐿 = 4. The noise level 𝜎𝑛 is selected from the
range [10−4, 1]. The performance of TCBSS is compared with the widely-
used ALS method [38] and its variants, namely ALS+LSH [45] and
ALS+ELSC [46], as depicted in Figs. 8–10. While their running times
are reported in Table 1. The results indicate that the proposed algo-
rithm not only achieves faster convergence but also provides improved
estimation accuracy in both setups.

5.2.2. EMG decomposition via convolutive BSS
We apply TCBSS to the problem of EMG decomposition and com-

pare its performance with other tensor-based BSS algorithms, namely
PARAFAC-SD [14] and TBSS-LL1 [10]. Synthetic EMG signals are simu-
lated using the convolutive BSS model (1), where 𝑎 [𝓁] represents the
𝑚𝑟
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Fig. 8. Convergence rate of type-2 BTD algorithms w.r.t. ER( tr , est ).
Fig. 9. Convergence rate of type-2 BTD algorithms w.r.t. RE(𝐀tr ,𝐀est ).
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Fig. 10. Effect of the noise level 𝜎𝑛 on the performance of type-2 BTD algorithms:
= 10, 𝐾 = 100, 𝑅 = 2, and 𝐿 = 2.

ction potential (AP) of the 𝑟th motor unit (MU) at the 𝑚th sensor. The
uration of the APs is 35 (i.e., 𝐿 = 34). The source 𝑠𝑟[𝑡] =

∑

𝑗 𝛿[𝑡 − 𝜓𝑟𝑗 ]
orresponds to the spike train of the 𝑟th MU, featuring spikes at times
𝑟𝑗 , with 𝛿[⋅] representing the Dirac delta function. Specifically, the 𝑚th
easurement 𝐱𝑚 is formulated as

𝑇 ∋ 𝐱𝑚 =
𝑅
∑

𝑟=1
𝐲𝑚𝑟 + 𝐧𝑚 =

𝑅
∑

𝑟=1
𝐚𝑚𝑟 ∗ 𝐬𝑟 + 𝐧𝑚, (80)

here 𝐧𝑚 is Gaussian noise. See Fig. 11 for an illustration. The ob-
ective of the EMG decomposition is to identify the underlying sources
𝐲𝑚𝑟}

𝑀,𝑅
𝑚=1,𝑟=1 (i.e., spike trains {𝐬𝑟}𝑅𝑟=1 and MUs {𝐚𝑚𝑟}

𝑀,𝑅
𝑚=1,𝑟=1) from

𝐱 }𝑀 . For further details, we refer the reader to [47].
12

𝑚 𝑚=1
Table 2
EMG spike train detection performance.

Method PARAFAC-SD TBSS-LL1 TCBSS

SNR Metric

SEN FDR SEN FDR SEN FDR

0 dB 87.74% 65.68% 85.85% 67.5% 86.79% 10.07%
10 dB 95.82% 49.50% 94.43% 50.98% 89.62% 9.52%
20 dB 100% 45.44% 100% 44.21% 99.06% 4.55%
∞ dB 100% 43.01% 100% 36.32% 100% 0%

In this task, three EMG measurements (𝑀 = 3) are comprised of
wo sources (𝑅 = 2) with an excitation level set at 5% of the maximum
oluntary contraction. The sampling frequency is 𝑓𝑠 = 2048 Hz. Each
easurement contains a sequence of data samples with a total length

f 𝑇 = 10000 samples, corresponding to an approximate duration of 5
. Four SNR levels are considered, including 0 dB, 10 dB, 20 dB and ∞
B (without noise). The total number of spikes from the two sources is
06. To satisfy the uniqueness condition 𝑀𝐿′ ≥ 𝑅(𝐿 + 𝐿′), we set the
xtension factor 𝐿′ of TCBSS to 2𝐿. Additionally, we set the number
f time lags 𝐾 to 30. As 𝑅 < 𝑀 , once obtaining the mixing matrix 𝐀,

the underlying sources are then determined up to an unknown filter
using the ordinary least-squares (OLS) estimation method (i.e., �̂� =
𝐀#𝐱). Subsequently, we identify the timings of activations of each MU,
thanks to the form of spike (impulse) trains. Detected spikes exhibiting
magnitude ten times lower than that of the spike with the highest
magnitude are identified as artifact and will be excluded from the final
detection result.

For performance evaluation, we employ sensitivity (SEN) and false
discovery rate (FDR) as key metrics in this task, which are defined as
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Fig. 11. Synthetic EMG signals (without noise): Convolutive mixture model with 𝑀 measurements and 𝑅 sources.
Fig. 12. EMG decomposition: Illustration of a 1-second segment of decomposition results (i.e., spike train ( ) and waveform ( )) related to the first component 𝐲11 = 𝐚11 ∗ 𝐬1 in
the noise-free case: Ground truth ( ), estimates by PARAFAC-SD ( ), TBSS-LL1 ( ), and the proposed TCBSS ( ).
follows:

SEN = TP
TP + FN

and FDR = FP
FP + TP

. (81)

Here, true positive (TP) represents the number of correctly identi-
fied spikes, false negative (FN) denotes the number of spikes left
unidentified, and false positive (FP) refers to the number of incorrectly
identified spikes. The algorithm’s performance is considered better
when the value of sensitivity (SEN) is higher and the value of false
discovery rate (FDR) is lower.

The decomposition results are shown in Fig. 12 and Table 2. At
SNR = ∞ dB (without noise), TCBSS successfully recovers the under-
lying EMG sources and two spike trains are detected correctly without
errors (i.e., SEN = 100%) and no additional impulses (spikes) are in-
troduced (i.e., FDR = 0%). While PARAFAC-SD and TBSS-LL1 correctly
identify the underlying spike trains, their false discovery rate (FDR) is
reasonably high due to the presence of several other impulses in the
recovered sources, as illustrated in Fig. 12 (blue and green lines). The
performance of all algorithms degrades when SNR decreases. However,
TCBSS remains effective in this task, with reasonable values for both
SEN and FDR, much better than that of PARAFAC-SD and TBSS-LL1.

5.2.3. Separation of convolutive speech mixtures
Our main objective is to demonstrate the use of TCBSS for separat-

ing sound signals in a reverberant/convolutive environment. We use a
publicly available dataset that contains 18 real sound sources, sampled
13
at a rate of 16 KHz over a time range from 24 to 30 s.6 The dataset
includes various sources, including speeches from both male and female
speakers as well as musical sounds like piano, guitar, trumpet, and
others.

In this work, our experiment involves three sound sources (male
speech, female speech, and piano) recorded by three microphones,
as illustrated in Fig. 13. These sounds are then mixed in a virtual
room using real-world measured room impulse responses (RIRs) to
simulate a realistic convolutive environment. The mixing process is
facilitated by the function ‘‘roommix.m’’, which can be accessed at
https://sound.media.mit.edu/ica-bench/’’. We compute a set of 20 co-
variance matrices {𝐑𝐱[𝑡, 𝜏𝑛]}20𝑛=1 to construct the third-order tensor ,
as in (56). Subsequently, the mixing matrix �̂� is estimated by TCBSS,
and the least-square estimate of the source vector is given by �̂� =
�̂�#𝐱. Due to the inherent ambiguity of block-term decomposition, the
recovered sources are identified up to a filter. For comparison purpose,
we resolve this ambiguity by determining the block permutation matrix
𝜫 and block diagonal matrix 𝜦 through optimization, specifically by
solving argmin𝜫 ,𝜦 ‖�̂�−𝐀𝜫𝜦‖

2
𝐹 where 𝐀 incorporates measured RIRs.7

We then choose three sources among recovered ones based on their
correlations, selecting those with the smallest correlation coefficients.

6 Access the speech dataset at: http://dimitri.nion.free.fr/bss/BSS.html.
7 The solver is available at: http://dimitri.nion.free.fr/Codes/matlab/tools/

pack_solve_scale.zip.

https://sound.media.mit.edu/ica-bench/
http://dimitri.nion.free.fr/bss/BSS.html
http://dimitri.nion.free.fr/Codes/matlab/tools/pack_solve_scale.zip
http://dimitri.nion.free.fr/Codes/matlab/tools/pack_solve_scale.zip
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Fig. 13. Speech signals used in this study.
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The experimental results are illustrated in Fig. 14. Despite the fact that
the recovered sources are not a perfect match to the ground truth (due
to the filter ambiguity), it is evident that the three sources are well
separated.

6. Conclusions

In this paper, we addressed the problem of blind source separa-
tion (BSS) through the lens of tensor decomposition. We established
two fundamental connections between BSS and tensor models, which
served as the basis for introducing two novel tensor-based methods:
TenSOFO and TBCSS. The former is specifically designed for joint
INDSCAL decomposition, addressing instantaneous BSS tasks, while
the latter is an efficient constrained type-2 block term decomposition
with two factors constrained to be identical, aligning its design with
convolution BSS. Our experimental results indicated the effectiveness of
both TenSOFO and TCBSS, showcasing their remarkable performance
in both tensor decomposition and BSS tasks, particularly when com-
pared to state-of-the-art algorithms. Notably, the proposed algorithm,
TCBSS, demonstrated its capability in reconstructing EMG sources and
exhibited improved performance as compared to other tensor-based
14

methods. c
CRediT authorship contribution statement

Thanh Trung Le: Writing – review & editing, Writing – origi-
nal draft, Validation, Software, Methodology, Investigation, Formal
analysis, Conceptualization. Karim Abed-Meraim: Writing – review
& editing, Validation, Supervision, Methodology, Conceptualization.
Philippe Ravier: Writing – review & editing, Validation, Supervision,
Funding acquisition, Data curation. Olivier Buttelli: Writing – review
& editing, Validation, Data curation. Ales Holobar: Writing – review
& editing, Validation, Data curation.

Data availability

Data will be made available on request.

Appendix. Proof of Theorem 1

Our convergence analysis of TenSOFO consists of three main stages:
(i) demonstrating that the Lagrangian 𝙾

(

𝐁(𝑙),𝐊(𝑙),𝐀(𝑙),𝜮(𝑙),𝐔(𝑙))

trictly decreases with each iteration of ADMM, while providing an
pper bound on the difference between Lagrangians computed at

onsecutive iterations; (ii) establishing the boundedness of both the
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Fig. 14. Recovered sources within the first 5 s: ground truth ( ) and estimated source ( ). Due the inherent ambiguity of BTD, the recovered source signals are not
perfectly matched to the original ones.
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sequence {𝐁(𝑙),𝐊(𝑙),𝐀(𝑙),𝜮(𝑙),𝐔(𝑙)} and its corresponding Lagrangian
𝙾

(

𝐁(𝑙),𝐊(𝑙),𝐀(𝑙), 𝜮(𝑙),𝐔(𝑙)); and (iii) indicating that the limit point
f the sequence generated by TenSOFO serves as a stationary point
f (37).

We begin with stage (i) by establishing Lemma 1.

emma 1 (Sufficient Descent). At each iteration 𝑙, let
{

𝐁(𝑙),𝐊(𝑙),𝐀(𝑙),𝜮(𝑙),
(𝑙) } denote the sequence of variables generated by TenSOFO and (𝑙)

𝙾
=

𝙾

(

𝐁(𝑙),𝐊(𝑙), 𝐀(𝑙),𝜮(𝑙),𝐔(𝑙)). If 𝜌𝙾 > 1 and 𝜌𝙰, 𝜌𝙱 > 0, there always exists a
et of positive numbers {𝑐1, 𝑐2, 𝑐3, 𝑐4} such that:

(𝑙+1)
𝙾

− (𝑙)
𝙾

≤ − 𝑐1
‖

‖

‖

𝐁(𝑙+1) − 𝐁(𝑙)‖
‖

‖

2

𝐹
− 𝑐2

‖

‖

‖

𝐊(𝑙+1) −𝐊(𝑙)‖
‖

‖

2

𝐹

− 𝑐3
‖

‖

‖

𝐀(𝑙+1) − 𝐀(𝑙)‖
‖

‖

2

𝐹
− 𝑐4

‖

‖

‖

𝜮(𝑙+1) −𝜮(𝑙)‖
‖

‖

2

𝐹
. (A.1)

Proof. We begin with proof of Lemma 1 by examining the difference
in the Lagrangian 𝙾(⋅) when 𝐀,𝜮 and 𝐔 are constant. Recall that, 𝐁(𝑙)

and 𝐊(𝑙) are derived from the iterative procedure (42). Therefore, we
first establish Proposition 4 to demonstrate the convergence of (42).

Proposition 4. Let
{

𝐁(𝑙,𝑖)
𝙻
,𝐁(𝑙,𝑖)

𝚁
,𝐊(𝑙,𝑖)}∞

𝑖=1 denote the sequence generated
by the iterative procedure (42) in the main text. If we denote𝐌(𝑙,𝑖) as one of
these variables, the minimizer𝐌(𝑙,𝑖+1) of the Lagrangian 𝙱(⋅) at the (𝑖+1)th
teration satisfies:

𝙱

(

𝐌(𝑙,𝑖+1), ⋅
)

− 𝙱

(

𝐌(𝑙,𝑖), ⋅
)

≤ −𝑑𝑚
‖

‖

‖

𝐌(𝑙,𝑖+1) −𝐌(𝑙,𝑖)‖
‖

‖

2

𝐹
, (A.2)

where 𝑑𝑚 is a positive number.

Proof. Recall that 𝐊(𝑙,𝑖+1) defined in (42a) is indeed the minimizer of
he Lagrangian 𝙱(⋅) when 𝐁𝙻,𝐁𝚁, and 𝐃 are fixed, i.e.,

(𝑙,𝑖+1) = argmin
𝐊

[

𝙱(𝐊, ⋅) =
‖

‖

‖

 − [[𝐁(𝑙,𝑖)
𝙻
,𝐁(𝑙,𝑖)

𝚁
,𝐊]]‖‖

‖

2

𝐹
+ const

]

. (A.3)

inimizing (A.3) is equivalent to solving the following least-squares
roblem

(𝑙,𝑖+1) = argmin
𝐊

[

ℎ(𝐊) = ‖

‖

‖

[


]

(3) −𝐊
(

𝐁(𝑙,𝑖)
𝚁

⊙ 𝐁(𝑙,𝑖)
𝙻

)⊤
‖

‖

‖

2

𝐹

]

. (A.4)

n particular, the least-squares function ℎ(𝐊) in (A.4) is strongly convex
( (𝑙,𝑖) (𝑙,𝑖))⊤( (𝑙,𝑖) (𝑙,𝑖))
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.r.t. the matrix 𝐊 as its Hessian matrix 𝐁
𝚁

⊙𝐁
𝙻

𝐁
𝚁

⊙𝐁
𝙻

is
ositive definite, and thus,
(

𝐊(𝑙,𝑖+1)) ≤ ℎ
(

𝐊(𝑙,𝑖)) − 1
2
‖

‖

‖

𝐊(𝑙,𝑖+1) −𝐊(𝑙,𝑖)‖
‖

‖

2

𝐹
, (A.5)

n other words, we have

𝙱

(

𝐊(𝑙,𝑖+1), ⋅
)

− 𝙱

(

𝐊(𝑙,𝑖), ⋅
)

≤ −1
2
‖

‖

‖

𝐊(𝑙,𝑖+1) −𝐊(𝑙,𝑖)‖
‖

‖

2

𝐹
. (A.6)

Next, we examine the matrix 𝐁(𝑙,𝑖+1)
𝙻

which is particularly derived
rom
(𝑙,𝑖+1)
𝙻

= argmin
𝐁𝙻

[

𝙱(𝐁𝙻, ⋅) =
‖

‖

‖

 − [[𝐁𝙻,𝐁
(𝑙,𝑖)
𝚁
,𝐊(𝑙,𝑖+1)]]‖‖

‖

2

𝐹

+
𝜌𝙾
2
‖

‖

‖

𝐁𝙻 − 𝐀(𝑙−1)
⊙2 + 𝐔(𝑙−1)‖

‖

‖

2

𝐹
+
𝜌𝙱
2
‖

‖

‖

𝐁𝙻 − 𝐁(𝑙,𝑖)
𝚁

+ 𝐃(𝑙,𝑖)‖
‖

‖

2

𝐹
+ const

]

= argmin
𝐁𝙻

[

𝙱(𝐁𝙻, ⋅) =
‖

‖

‖

[


]

(1) − 𝐁𝙻

(

𝐊(𝑙,𝑖+1) ⊙ 𝐁(𝑙,𝑖)
𝚁

)⊤
‖

‖

‖

2

𝐹

+
𝜌𝙾
2
‖

‖

‖

𝐁𝙻 − 𝐀(𝑙−1)
⊙2 + 𝐔(𝑙−1)‖

‖

‖

2

𝐹
+
𝜌𝙱
2
‖

‖

‖

𝐁𝙻 − 𝐁(𝑙,𝑖)
𝚁

+ 𝐃(𝑙,𝑖)‖
‖

‖

2

𝐹
+ const

]

.

(A.7)

All three terms of the right hand side (RHS) of (A.7) are in the least-
squares form. Thus, the objective function (A.7) are strongly convex,
characterized by the following positive definite Hessian matrix

𝛁2𝙱

(

𝐁𝙻, ⋅
)

= (𝜌𝙾 + 𝜌𝙱)𝐈 +
(

𝐊(𝑙,𝑖+1) ⊙ 𝐁(𝑙,𝑖)
𝚁

)⊤(𝐊(𝑙,𝑖+1) ⊙ 𝐁(𝑙,𝑖)
𝚁

)

≻ 𝟎. (A.8)

ccordingly, we derive

𝙱

(

𝐁(𝑙,𝑖+1)
𝙻

, ⋅
)

− 𝙱

(

𝐁(𝑙,𝑖)
𝙻
, ⋅
)

≤ −
𝑑1𝑖
2

‖

‖

‖

𝐁(𝑙,𝑖+1)
𝙻

− 𝐁(𝑙,𝑖)
𝙻

‖

‖

‖

2

𝐹
, (A.9)

ith 𝑑1𝑖 = 𝜌𝟶+𝜌𝙱+𝜆min(𝐊(𝑙,𝑖+1)⊙𝐁(𝑙,𝑖)
𝚁

) where 𝜆min(𝐍) denotes the smallest
ingular value of matrix 𝐍.

The matrix 𝐁(𝑙,𝑖+1)
𝚁

is the minimizer of the following optimization

(𝑙,𝑖+1)
𝚁

= argmin
𝐁𝚁

[

𝙱(𝐁𝚁, ⋅) =
‖

‖

‖

 − [[𝐁(𝑙,𝑖+1)
𝙻

,𝐁𝚁,𝐊(𝑙,𝑖+1)]]‖‖
‖

2

𝐹

+
𝜌𝙱
2
‖

‖

‖

𝐁(𝑙,𝑖+1)
𝙻

− 𝐁𝚁 + 𝐃(𝑙,𝑖)‖
‖

‖

2

𝐹
+ const

]

= argmin
𝐁𝚁

[

𝙱(𝐁𝚁, ⋅) =
‖

‖

‖

[


]

(2) − 𝐁𝚁

(

𝐊(𝑙,𝑖+1) ⊙ 𝐁(𝑙,𝑖+1)
𝙻

)⊤
‖

‖

‖

2

𝐹

+
𝜌𝙱
2
‖

‖

‖

𝐁(𝑙,𝑖+1)
𝙻

− 𝐁𝚁 + 𝐃(𝑙,𝑖)‖
‖

‖

2

𝐹
+ const

]

. (A.10)
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Similar to (A.7), the objective function (A.10) is strongly convex with
respect to 𝐁𝚁. Consequently, we have:

𝙱

(

𝐁(𝑙,𝑖+1)
𝚁

, ⋅
)

− 𝙱

(

𝐁(𝑙,𝑖)
𝚁
, ⋅
)

≤ −
𝑑2𝑖
2

‖

‖

‖

𝐁(𝑙,𝑖+1)
𝙻

− 𝐁(𝑙,𝑖)
𝙻

‖

‖

‖

2

𝐹
, (A.11)

ith 𝑑2𝑖 = 𝜌𝙱 + 𝜆min(𝐊(𝑙,𝑖+1) ⊙ 𝐁(𝑙,𝑖+1)
𝙻

). It ends the proof. □

Thanks to Proposition 4, we observe that the set of the objective
alues of 𝙱(⋅) at solutions is monotonically decreasing and bounded.
hanks to monotone convergence theorem, we can conclude that the
luster

{

𝐁(𝑙,𝑖)
𝙻
,𝐁(𝑙,𝑖)

𝚁
,𝐊(𝑙,𝑖)} converges to a limit point as 𝑖 tends to infinity.

his convergence implies that the solution
{

𝐁(𝑙),𝐊(𝑙)} of (P1.1) gener-
ated by the iterative procedure (42) converge to a stationary point of
𝙱(⋅) as its gradients with respect to both matrices are zero, according
to our optimization framework. In addition, the Lagrangian 𝙾(𝐁,𝐊, ⋅)
in (38) comprises three convex terms with respect to 𝐁 and 𝐊, including
a function involving the Frobenius inner product

⟨

𝐙,𝐁 − 𝐀⊙2
⟩

and two
least-squares functions 𝑓 (𝐁,𝐊) and 𝜌𝙾

2 ‖𝐁−𝐀⊙2‖2𝐹 . Therefore, 𝙾(𝐁,𝐊, ⋅)
is a multi-convex function and using the same arguments above (e.g., as
for (A.7)) results in

𝙾

(

𝐁(𝑙+1),𝐊(𝑙+1), ⋅
)

− 𝙾

(

𝐁(𝑙),𝐊(𝑙), ⋅
)

≤ −
𝑐1
2
‖

‖

‖

𝐁(𝑙+1) − 𝐁(𝑙)‖
‖

‖

2

𝐹
−
𝑐2
2
‖

‖

‖

𝐊(𝑙+1) −𝐊(𝑙)‖
‖

‖

2

𝐹
, (A.12)

where 𝑐1 and 𝑐2 are any positive numbers satisfying ∇2𝙾(𝐁, ⋅) ⪰ 𝑐1𝐈
and ∇2𝙾(𝐊, ⋅) ⪰ 𝑐2𝐈.

Similarly, employing the same approach as in the proof of Proposi-
tion 4 and arguments above, we also obtain

𝙾

(

𝐀(𝑙+1),𝜮(𝑙+1), ⋅
)

− 𝙾

(

𝐀(𝑙),𝜮(𝑙), ⋅
)

≤ −
𝑐3
2
‖

‖

‖

𝐀(𝑙+1) − 𝐀(𝑙)‖
‖

‖

2

𝐹
−
𝑐4
2
‖

‖

‖

𝜮(𝑙+1) −𝜮(𝑙)‖
‖

‖

2

𝐹
, (A.13)

where 𝑐3 and 𝑐4 are positive numbers. The result in Lemma 1 follows
the combination of two inequalities (A.12) and (A.13). It ends the
proof. □

Proposition 5 (Boundedness). The sequence {𝐁(𝑙),𝐊(𝑙),𝐀(𝑙),𝜮(𝑙),𝐔(𝑙)}
generated by TenSOFO and the Lagrangian 𝙾

(

𝐁(𝑙),𝐊(𝑙),𝐀(𝑙),𝜮(𝑙),𝐔(𝑙)) are
bounded.

Proof. Thanks to Lemma 1, we obtain (𝑙)
𝙾

≤ (0)
𝙾

∀𝑙, i.e., the Lagrangian
𝙾(⋅) has an upper bound 𝙾. Next, we consider the lower bound for
(𝑙)
𝙾

.
Employing the dual variable update 𝐔(𝑙) in (P1.3), we can recast the

formulation of 𝙾(⋅) in (39) into the following form

(𝑙)
𝙾

= ‖

‖

‖

 − [[𝐁(𝑙),𝐁(𝑙),𝐊(𝑙)]]‖‖
‖

2

𝐹
+ ‖

‖

‖

 − [[𝐀(𝑙),𝐀(𝑙),𝜮(𝑙)]]‖‖
‖

2

𝐹

+
𝜌𝙾 − 1

2
‖

‖

‖

𝐁(𝑙) − 𝐀(𝑙)
⊙2

‖

‖

‖

2

𝐹
. (A.14)

hen 𝜌𝙾 > 1, the RHS of (A.14) is guaranteed to be positive, indicating
hat the Lagrangian 𝙾(⋅) is bounded below by zero. The boundedness
f Lagrangian suggests that all (positive) terms within (A.14) are also
ounded. Consequently, we can infer that the sequence {𝐁(𝑙),𝐀(𝑙)} is
ounded due to the boundedness of ‖𝐁(𝑙) − 𝐀(𝑙)

⊙2‖
2
𝐹 . Expressing the

irst term of (A.14) as ‖

‖

‖

[](3) − 𝐊(𝑙)(𝐁(𝑙) ⊙ 𝐁(𝑙))⊤‖‖
‖

2

𝐹
, combined with the

oundedness of , ensures that {𝐊(𝑙)} is bounded. Following the same
arguments above, we also conclude {𝜮(𝑙)} is bounded. The boundedness
f the scaled dual variable {𝐔(𝑙)} stems from the boundedness of the
hird term,

⟨

𝜌𝙾𝐔(𝑙),𝐁(𝑙)−𝐀(𝑙)
⊙2

⟩

, in the original version (38) of 𝙾(⋅) (note
hat 𝐙 = 𝜌𝙾𝐔). □

Now, iterating the inequality (A.1) in Lemma 1 for 𝑙 = 0, 1,… , 𝐿
esults in

(0)
𝙾

− (𝐿+1)
𝙾

≥ 𝑐1
𝐿
∑

‖

‖

‖

𝐁(𝑙+1) − 𝐁(𝑙)‖
‖

‖

2

𝐹
+ 𝑐2

𝐿
∑

‖

‖

‖

𝐊(𝑙+1) −𝐊(𝑙)‖
‖

‖

2

𝐹

16

𝑙=0 𝑙=0
+ 𝑐3
𝐿
∑

𝑙=0

‖

‖

‖

𝐀(𝑙+1) − 𝐀(𝑙)‖
‖

‖

2

𝐹
+ 𝑐4

𝐿
∑

𝑙=0

‖

‖

‖

𝜮(𝑙+1) −𝜮(𝑙)‖
‖

‖

2

𝐹
. (A.15)

ue to the Lagrangian 𝙾(⋅) is decreasing and bounded, we get
∞
∑

𝑙=0

‖

‖

‖

𝐁(𝑙+1) − 𝐁(𝑙)‖
‖

‖

2

𝐹
< ∞,

∞
∑

𝑙=0

‖

‖

‖

𝐊(𝑙+1) −𝐊(𝑙)‖
‖

‖

2

𝐹
<∞, (A.16)

∞
∑

𝑙=0

‖

‖

‖

𝐀(𝑙+1) − 𝐀(𝑙)‖
‖

‖

2

𝐹
<∞,

∞
∑

𝑙=0

‖

‖

‖

𝜮(𝑙+1) −𝜮(𝑙)‖
‖

‖

2

𝐹
<∞, (A.17)

s 𝐿 goes to infinity. In other words, we conclude

𝐁(𝑙+1) − 𝐁(𝑙)‖
‖

‖

2

𝐹
→ 0, ‖

‖

‖

𝐊(𝑙+1) −𝐊(𝑙)‖
‖

‖

2

𝐹
→ 0, (A.18)

𝐀(𝑙+1) − 𝐀(𝑙)‖
‖

‖

2

𝐹
→ 0, ‖

‖

‖

𝜮(𝑙+1) −𝜮(𝑙)‖
‖

‖

2

𝐹
→ 0. (A.19)

roposition 6. Let (𝐁⋆,𝐊⋆,𝐀⋆,𝜮⋆,𝐔⋆) be a saddle point of 𝙾(⋅) and
efine

(𝑙) = 𝜌𝙾
‖

‖

‖

𝐔(𝑙) − 𝐔⋆‖‖
‖

2

𝐹
+ 𝜌𝙾

‖

‖

‖

𝐀(𝑙)
⊙2 − 𝐀⋆⊙2

‖

‖

‖

2

𝐹
. (A.20)

hen 𝑉 (𝑙) is a Lyapunov function for TenSOFO, i.e.,

(𝑙+1) − 𝑉 (𝑙) ≤ −𝜌𝙾
‖

‖

‖

𝐔(𝑙+1) − 𝐔(𝑙)‖
‖

‖

2

𝐹
− 𝜌𝙾‖𝐀

(𝑙+1)
⊙2 − 𝐀(𝑙)

⊙2‖
2
𝐹 . (A.21)

roof. Its proof follows the same mathematical framework used in the
onvergence analysis of the standard ADMM method, as detailed in [39,
ppendix A]. □

Proposition 6 also demonstrates the boundedness of the sequence
f the (scaled) dual variable {𝐔(𝑙)}. Subsequently, we utilize the same
rguments as in (A.15)–(A.19) to establish
∞
∑

𝑙=0
𝜌0
‖

‖

‖

𝐔(𝑙+1) − 𝐔(𝑙)‖
‖

‖

2

𝐹
< 𝑉 (0) <∞ (A.22)

𝐔(𝑙+1) − 𝐔(𝑙)‖
‖

‖

2

𝐹
→ 0 as 𝑙 → ∞. (A.23)

o sum up, the sequence
{

𝐁(𝑙),𝐊(𝑙),𝐀(𝑙),𝜮(𝑙),𝐔(𝑙)} generated by Ten-
OFO converges to a limit point (𝐁∞,𝐊∞,𝐀∞,𝜮∞,𝐔∞) as 𝑙 goes to
nfinity, and

𝙾

(

𝐁∞,𝐊∞,𝐀∞,𝜮∞,𝐔∞)

= lim
𝑙→∞

𝙾

(

𝐁(𝑙),𝐊(𝑙),𝐀(𝓁),𝜮(𝑙),𝐔(𝑙)). (A.24)

In the final step, we examine the gradient of 𝙾(⋅) at the limit point
𝐁∞,𝐊∞, 𝐀∞,𝜮∞,𝐔∞). In short, we denote  ∶= (𝐁,𝐊,𝐀,𝜮,𝐔) and
∞ ∶= (𝐁∞,𝐊∞, 𝐀∞,𝜮∞,𝐔∞). First, we observe that partial derivatives
f 𝙾(⋅) w.r.t. each variable is Lipschitz continuous (as multi-block
onvex functions are locally Lipschitz). Accordingly, we obtain

𝙾(
(𝑙))−𝙾(

(𝑙+1))−tr
[

(

(𝑙)−(𝑙+1))⊤∇𝙾(
(𝑙+1))

]

|

|

|

≤ �̃�‖‖
‖

(𝑙)−(𝑙+1)‖
‖

‖

2

𝐹
,

(A.25)

here �̃� represents the maximum Lipschitz constant of all partial
erivatives of 𝙾(⋅). We then have

r
[

(

(𝑙) −(𝑙+1))⊤∇𝙾(
(𝑙+1))

]

≤ �̃�‖‖
‖

(𝑙) −(𝑙+1)‖
‖

‖

2

𝐹
+(𝑙)

𝙾
−(𝑙+1)

𝙾
, (A.26)

hanks to the triangle inequality. Hence, summing (A.26) for 𝑙 =
, 1,… ,∞ results in
∞

𝑙=0
tr
[

(

(𝑙) −(𝑙+1))⊤∇𝙾(
(𝑙+1))

]

<∞, (A.27)

t implies that

lim
𝑙→∞

tr
[

(

(𝑙) −(𝑙+1))⊤∇𝙾(
(𝑙+1))

]

= 0. (A.28)

nspired by our companion work on CP decomposition in [48], we can
pply the proof by contradiction to indicate that (∞) is a stationary
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point of (∞)
𝙾

𝛥
= lim𝑙→∞ 𝙾(⋅). Specifically, assume that (∞) is not a

stationary point of (𝑙)
𝙾

when 𝑙 → ∞. In such a case, there exist  and
𝜀 > 0 satisfying

tr
[

(

 −(∞))⊤∇(∞)
𝙾

((∞))
]

< −𝜀 < 0. (A.29)

Thanks to the triangle inequality, we have
‖

‖

‖

(

 −(𝑙+1))⊤∇𝙾(
(𝑙+1)) −

(

 −(∞))⊤∇(∞)
𝙾

((∞))‖‖
‖

2

𝐹

≤ ‖

‖

‖

∇𝙾(
(𝑙+1)) − ∇(∞)

𝙾
((∞))‖‖

‖

2

𝐹
‖

‖

‖

 −(𝑙+1)‖
‖

‖

2

𝐹

+ ‖

‖

‖

∇(∞)
𝙾

((∞))‖‖
‖

2

𝐹
‖

‖

‖

(∞) −(𝑙+1)‖
‖

‖

2

𝐹
(A.30)

We observe that when 𝑙 → ∞, the RHS of (A.30) tends to zero due to
(𝑙+1) → (∞) and ∇𝙾(

(𝑙+1)) → ∇(∞)
𝙾

((∞)). From (A.29), we derive

tr
[

(

 −(𝑙+1))⊤∇𝙾(
(𝑙+1))

]

≤ −𝜀 < 0. (A.31)

As mentioned above, partial derivatives of 𝙾(⋅) are Lipschitz and we
know that (𝑙+1) = argmin 𝙾() at the (𝑙 + 1)th iteration. Due to
Lipschitz continuity, we can further obtain

tr
[

(

(𝑙) −(𝑙+1))⊤

‖ −(𝑙+1)
‖𝐹

∇𝙾(
(𝑙+1))

]

≤ inf tr
[

(

 −(𝑙+1))⊤

‖ −(𝑙+1)
‖𝐹

∇𝙾(
(𝑙+1))

]

+ 𝑐‖‖
‖

(𝑙) −(𝑙+1)‖
‖

‖

2

𝐹
, (A.32)

where 𝑐 is a positive number, thanks to [49, Proposition 9]. Let 𝑙 go to
infinity, (A.32) becomes

lim
𝑙→∞

tr
[

(

(𝑙) −(𝑙+1))⊤∇𝙾(
(𝑙+1))

]

≤ −𝜀 < 0, (A.33)

because of ‖‖
‖

(𝑙)−(𝑙+1)‖
‖

‖

2

𝐹
→ 0 as 𝑙 → ∞. Here, (A.33) is a contradiction

in (A.28). Therefore, (∞) must be a stationary point of (∞)
𝙾

. It ends
the proof.
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