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Abstract—In this work, we propose a blind channel estimation
method in multiple-input multiple-output systems using a tensor
decomposition approach. Consequently, fundamental link be-
tween convolutive channels and block-term decomposition (BTD)
is established. The proposed approach leverages the second-order
statistics of the received signals to construct a third-order tensor
by stacking covariance matrices at different time lags. Then, the
channel estimation process consists of two stages. In the first
stage, the tensor is decoupled using the type-2 BTD technique
to extract the loading factors. In the second stage, a Toeplitz
constraint is imposed on the loading factors to obtain the channel
matrix. The loading factors are constraint to be identical and
have a Toeplitz structure. The numerical simulations show the
effectiveness of the proposed method.

Index Terms—Block-term decomposition, Toeplitz structure,
Blind, Constraint, Channel estimation.

I. INTRODUCTION

In recent years, tensor decomposition has emerged as a
transformative tool for multidimensional data analysis across
diverse fields, fueled by advancements in computational re-
sources [1], [2]. This method, which factorizes multidimen-
sional arrays (tensors) into fundamental components, has
shown exceptional promise in addressing complex challenges
within communication, signal processing, and artificial intel-
ligence, among others [3]–[6]. Of particular relevance is its
application in blind communication systems, where numerous
tensor decomposition techniques have been tailored for en-
hanced performance. The canonical polyadic (CP) decompo-
sition, for example, has become foundational in tensor-based
blind algorithms [7], while the higher-order singular value
decomposition (HOSVD) approach has also proven effective
in solving a range of blind communication problems [8],
[9]. These methods underscore the critical role of tensor
decomposition in advancing robust and scalable solutions for
multidimensional data processing.

Current tensor-based decomposition methods are primar-
ily designed for handling instantaneous blind communication
systems, often constrained to specific applications, and are
less suited for convolutive systems. Consequently, convolutive
mixtures frequently need conversion to instantaneous forms
via frequency domain representation or transformations be-
fore applying existing tensor-based techniques. However, this
approach has significant drawbacks, including inconsistencies
in filter coefficients across frequencies, as well as scaling and

permutation indeterminacies. Addressing these challenges ne-
cessitates the development of advanced tensor-based methods
capable of directly processing convolutive mixtures, offering
robust solutions free from these inherent limitations.

In this work, we propose a novel framework leveraging
tensor decomposition to exploit the convolutive characteristics
of communication systems for blind channel estimation. The
proposed framework consists of two stages. In the first stage,
type-2 BTD is applied to the tensor to extract the loading
factors, which are constrained to be identical. In the second
stage, a Toeplitz structure constraint is imposed on the loading
factors to formulate a cost function, which is minimized to
obtain the desired channel matrix.

A third-order tensor is constructed by stacking covariance
matrices of the received signals, allowing BTD to estimate
the block Toeplitz matrix that encapsulates the desired channel
information. This approach advances the tensor decomposition
literature by introducing an optimized, effective solution for
channel estimation in convolutive systems, and eventually
demonstrating both efficiency and robustness.

Notations: scalars, vectors, matrices and tensors are repre-
sented by lowercase letter x, bold lowercase letter x, bold
capital letter X and bold calligraphic letter X , respectively.
X (n) represents the mode-n matricization of a tensor X (n).
Transpose, conjugate transpose, pseudo-inverse and conjugate
operation are, respectively, donated by (·)⊤, (·)H , (·)†, and
(·)∗. The Kronecker product, block Kronecker product, and
convolution of matrices H and Q are represented by H⊗Q,
H ⊗b Q, and H ⊛ Q, respectively. The function blkdiag(·)
is used to construct a block diagonal matrix. ∥ · ∥2 and
∥·∥F denote euclidean norm and Frobenius norm, respectively.
An identity matrix of size N × N is represented as IN .
The mode-n product between a tensor X ∈ CI1×I2×···×IN

and a matrix H ∈ CJn×In produces a new tensor Y =
X ×n H ∈ CI1×···×Jn×···×IN . Finally, Y = X ×n H then
[Y ](n) = H[X ](n).

II. THE TYPE-2 BTD

For comprehension and reader’s convenience, the type-2
BTD [10], [11] variant of the block term decomposition (BTD)
[12] is briefly presented. The main aim of the type-2 BTD
is to factorize a third-order tensor Y ∈ CI×J×E into a



set of multilinear-rank components {Yr}Rr=1, which can be
expressed as follows:

Y =

R∑
r=1

Yr =

R∑
r=1

Gr ×1 Hr ×2 Qr, (1)

where Gr ∈ CLr×Mr×E denotes the core tensor of the rth

component of Yr and the loading factors Hr ∈ CI×Lr and
Qr ∈ CJ×Mr are all full column rank matrices. Since (1) is
trilinear in H = [H1,H2, . . . ,HR], Q = [Q1,Q2, . . . ,QR],
and G = blkdiag(G1,G2, . . . ,GR), its computation follows
the standard alternating least-squares (ALS) method [13]. Ad-
ditionally, the type-2 BTD is essentially unique under certain
mild conditions [12]. To support our algorithm development,
we present three mode-n matrix representations of Y .

Y(1) = H
[
[G1 ×2 Q1]

⊤
(1), . . . , [GR ×2 QR]

⊤
(1)

]⊤
, (2)

Y(2) = Q
[
[G1 ×1 H1]

⊤
(2), . . . , [GR ×1 HR]

⊤
(2)

]⊤
, (3)

Y(3) =
[
[G1](3), . . . , [GR](3)

]
(H⊗b Q)⊤. (4)

III. THE SYSTEM MODEL

Let us consider a multiple-input multiple-output communi-
cation system equipped with K number of transmitting and
M number of receiving antennas. Assuming that at a time
instance t, transmitted signal is x(t) = [x1(t), . . . , xK(t)]⊤

through an unknown channel H̄(t) ∈ CM×K , in the presence
of noise n(t) ∈ CM . The received signal y(t) ∈ CM can be
expressed as follows [14]–[20]:

y(t) = H̄(t)⊛ x(t) + n(t), t = 0, . . . , T − 1

=

L∑
l=0

H̄(l)x(t− l) + n(t), (5)

where L represents the channel order, and T denotes the total
sample size and

H̄(l) =

 h11(l) . . . h1K(l)
...

...
hM1(l) . . . hMK(l)

 .

If we stack Nw elements of y(t) into a vector yNw(t), the
model modifies to

yNw(t) = HxNw(t) + nNw(t), (6)

where yNw(t) = [y⊤(t), . . . ,y⊤(t − Nw + 1)]⊤ ∈
CMNw×1 is the stacked received signal vector, xNw

(t) =
[x⊤(t), . . . ,x⊤(t − L − Nw + 1)]⊤ ∈ CP×1, P = KR
and R = L + Nw, and the corresponding noise vector is
nNw(t) = [n⊤(t), . . . ,n⊤(t − Nw + 1)]⊤ ∈ CMNw×1. The
channel matrix H ∈ CMNw×P is given as

H =

 H̄(0) · · · H̄(L) 0
. . . . . .

0 H̄(0) · · · H̄(L)


=

[
H1 · · · HL+1 · · · HR

]
(7)

Here, we assumed that the individual input signals are tem-
porary coherent while maintaining their mutual independence
[21]. In essence, the correlation between two inputs xi(t)
and xj(t), for i ̸= j, follows E[xi(t)xj(t − τ)∗] = 0 ∀τ .
Therefore, the correlation matrix that corresponds to (6) can
be represented as follows:

RyNw
(t, τ) ≜ E[yNw

(t)yH
Nw

(t− τ)]

= HE[xNw
(t)xH

Nw
(t− τ)]HH

= H

Rx̄1
(t, τ) 0

. . .
0 Rx̄R

(t, τ)

HH

≜ H blkdiag({Rx̄r
(t, τ)}Rr=1)H

H , (8)

where xNw
(t) = [x⊤(t), . . . ,x⊤(t − L − Nw + 1)]⊤ ≜

[x̄⊤
1 (t), . . . , x̄

⊤
R(t)]

⊤, hence the subscript in (8). Now, if we
consider multiple time lags, {τj}Jj=1, where J = T −Nw+1,
we obtain the following:

RyNw
(t, τ1) = H blkdiag({Rx̄r (t, τ1)}Rr=1)H

H

...
RyNw

(t, τJ) = H blkdiag({Rx̄r (t, τJ)}Rr=1)H
H . (9)

By consecutively stacking {RyNw
(t, τj)}Jj=1

and {RxNw
(t, τj)}Jj=1 along the third mode of

R ∈ CMNw×MNw×J and G ∈ CP×P×J we obtain the
following representation:

R = G ×1 H×2 H =

R∑
r=1

Gx̄r
×1 Hr ×2 Hr (10)

where Gx̄r
(:, :, j) = Rx̄r

(t, τj) and Hr represents the rth

block column of H as implicitly defined in (7).
Equation (10) illustrates a modified form of type-2 Block

Term Decomposition as presented in (1), where the factor
matrices H and Q are enforced to be identical. Notably,
under certain mild conditions, (10) is effectively unique, if
MNw ≥ P and J ≥ 3. Specifically, the estimate H̃ of H is
unique up to basic ambiguities, meaning H̃ = HΠΛ where
Π represents a block permutation matrix, and Λ is a square
nonsingular block-diagonal matrix.

IV. PROPOSED OPTIMIZATION FRAMEWORK

This section introduces the proposed two-stage channel
estimation framework. First, the type-2 BTD optimization is
applied to extract loading factors, followed by a Toeplitz con-
straint cost function for blind channel estimation as follows:

arg min
G,H,Q

∥∥∥R−
R∑

r=1

Gx̄r
×1 Hr ×2 Qr

∥∥∥2
F
s.t. H = Q, (11)

where H = [H1,H2, . . . ,HR] and Q = [Q1,Q2, . . . ,QR].
To estimate the channel, the Lagrangian function is utilized to



enforce minimization while also imposing a Toeplitz structure
constraint, as follows:

L(G,H,Q,U) = min
G,H,Q

∥∥∥R−
R∑

r=1

Gx̄r ×1 Hr ×2 Qr

∥∥∥2
F

+
ρ

2
∥H−Q+Q∥2F − ρ

2
∥U∥2F,

(12)

where U represents the scaled dual variable and ρ > 0 is a
regularized parameter. The primary objective is to minimize
the Lagrangian function with respect to H, Q, and G while
maintaining the dual variable U. The closed form solution of
the problem is presented as follows:

H =
(
R(1)Z

H
H + ρ(Q+U)

)(
ZHZH

H + ρIP
)−1

(13)

Q =
(
R(2)Z

H
Q + ρ(Q−U)

)(
ZQZ

H
Q + ρIP

)−1
(14)

and [
[Gx̄1

](3), . . . , [Gx̄R
](3)

]
= R(3)

(
(B⊗b A)⊤

)†
(15)

where ZH and ZQ are defined as

ZH =
[
[Gx̄1

×2 Q1]
⊤
(1), . . . , [Gx̄R

×2 QR]
⊤
(1)

]⊤
(16)

ZQ =
[
[Gx̄1 ×1 H1]

⊤
(2), . . . , [Gx̄R

×1 HR]
⊤
(2)

]⊤
(17)

The stationary point of the optimization function L(·) is
found using an iterative procedure.

Here, W(i) and βi are auxiliary variables designed to
enhance the convergence speed of the iterative procedure. The
incorporation of Equations (18d) to (18f) accelerates the aug-
mented Lagrangian approach, improving both computational
efficiency and estimation accuracy. The stopping criteria is
implemented based on the maximum iteration number, Imax,
or the following criteria:

∥H(i)−Q(i)∥2F ≤ αpre, ∥ρ(H(i)−H(i−1))∥2F ≤ αdual, (18)

where

αpre = σabs

√
MKNwR+ σrel max{∥H(i)∥2, ∥Q(i)∥2},

and

αdual = σabs

√
MKNwR+ σrel max{∥ρU(i)∥2},

where σabs > 0 and σrel > 0 denotes the absolute and
relative tolerance, respectively. In practice, the value of ρ can
be set to unity, σabs = 10−4 and σrel = 10−2 for good
performance. After obtaining the matrix H from the tensor
decomposition, the channel estimate is obtained as Ĥ = HW,
where W is a matrix that enforces the Toeplitz structure. A
cost function that exploit the Toeplitz structure to estimate the
channel coefficient is formulated as given below:

J = ∥J1ĤJ2 − J3ĤJ4∥2F + ∥J5ĤJ6∥2F + ∥J7ĤJ8∥2F
= ∥J1HWJ2 − J3HWJ4∥2F + ∥J5HWJ6∥2F
+ ∥J7HWJ8∥2F (19)

where J1 = [IMNw−M ,0MNw−M,M ], J2 =
[IP−K ,0P−K,K ]⊤, J3 = [0MNw−M,M , IMNw−M ],

Algorithm 1: The proposed optimization framework.

Initialize H(0), Q(0), U(0), and G(0) at i = 0
while the current iteration is less than Imax do

H(i) = argmin
H

∥R−
R∑

r=1

G(i−1)
x̄r

×1 Hr ×2 Q
(i−1)
r ∥2F

+
ρ

2
∥Q(i−1) −H+U(i−1)∥2F (18a)

Q(i) = argmin
Q

∥R−
R∑

r=1

G(i−1)
x̄r

×1 H
(i)
r ×2 Qr∥2F

+
ρ

2
∥Q(i−1) −H+U(i−1)∥2F (18b)

G(i) = argmin
G

∥R−
R∑

r=1

Gx̄r
×1 H

(i)
r ×2 Q

(i)
r ∥2F

(18c)

U(i) = W(i−1) +Q(i) −H(i) (18d)

βi =
1 +

√
1 + 4β2

i−1

2
(18e)

W(i) = U(i) +
βi−1 − 1

βi
(U(i) −U(i−1)) (18f)

i = i+ 1

end

J4 = [0P−K,K , IP−K ]⊤, J5 = [IM ,0M,MNw−M ],
J6 = [0P−na,na

IP−na
]⊤, J7 = [0MNw−M , IMNw−M ]

J8 = [IK 0K,P−K ]⊤ are all selection matices used to select
a specific region of the channel matrix.

It is important to note that the proposed cost function
comprises three main components. The first part enforces the
Toeplitz structure on the block diagonal matrix elements, the
second part minimizes the zeros along the columns, and the
third part minimizes the zeros along the rows of the channel
matrix.

Using the Kronecker product property, the cost function J
can be vectorized as follow.

J = ∥(J⊤
2 ⊗ (J1H)− J⊤

4 ⊗ (J3H))w∥22
+ ∥(J⊤

6 ⊗ (J5H))w∥22 + ∥(J⊤
8 ⊗ (J7H))w∥22

= wH(J⊤
2 ⊗ (J1H)− J⊤

4 ⊗ (J3H))H

× (J⊤
2 ⊗ (J1H)− J⊤

4 ⊗ (J3H))w

+ wH(J⊤
6 ⊗ (J5H))H(J⊤

6 ⊗ (J5H))w

+ wH(J⊤
8 ⊗ (J7H))H(J⊤

8 ⊗ (J7H))w

= wHKH
1 K1w +wHKH

2 K2w +wHKH
3 K3w

= wH [KH
1 K1 +KH

2 K2 +KH
3 K3]w

= wH [KHK]w, (20)



where K1 = (J⊤
2 ⊗ (J1H) − J⊤

4 ⊗ (J3H)), K2 = (J⊤
6 ⊗

(J5H)), K3 = (J⊤
8 ⊗ (J7H)) and K = [K⊤

1 K⊤
2 K⊤

3 ]
⊤ are

implicitly defined in (21). The optimal ŵ is determined by
performing the singular value decomposition (SVD) of KHK
and selecting the eigenvector corresponding to the smallest
eigenvalue. The obtained vector ŵ is reshaped into a matrix
Ŵ ∈ CMNw×MNw and used to obtain the channel Toeplitz
matrix estimate Ĥ = HŴ. The channel taps are obtained by
averaging the diagonal elements of the Ĥ matrix.

V. COMPUTATIONAL COMPLEXITY

In our proposed method, the overall computational complex-
ity is determined by the sum of two key components: the tensor
decomposition required to obtain the factor matrix, and the
subsequent channel estimation procedure. The updates for both
H in (13) and Q in (14) have the same computational steps
which requires O(M2NwRKJ + MNwR

2K2J + N3
wK

3)
flops. In the case of G presented in (15), the computational cost
is O(M2N2

wR
2KJ +M2N2

wKR2min(M2N2
w,KR2)) flops.

For U, Z and α the computation cost required to update them
is inexpensive and is O(MNwKR), O(MNwKR), and O(1)
respectively. Hence, the total complexity of the type-2 BTD
is O(M2N2

wR
2Kmax(J,R2K)+R3K3). The computational

complexity of the channel estimation part is O(K3R3). There-
for, the overall complexity is O(M2N2

wR
2Kmax(J,R2K) +

R3K3 +K3R3).

VI. SIMULATIONS

In this section, we validate the efficacy of the proposed
type-2 BTD-based channel estimation through comprehensive
numerical simulations and performance comparisons with the
widely adopted ALS method [22] and its variants, including
ALS-LSH [23] and ALS-ELSC [24]. In all scenarios, we first
apply tensor decomposition, followed by the imposition of
a Toeplitz constraint on the loading factors to estimate the
channel. The performance evaluation is conducted using the
mean squared error (MSE), defined as

MSE =

√√√√ 1

Nm

Nm∑
i=1

∥Ĥi −Hi∥2, (21)

where Nm = 100 denotes the number of Monte Carlo runs.
Throughout the simulations, we adopt the following parameter
settings: K = 2, M = 4, L = 2, Nw = 5, and T = 100, unless
stated otherwise.

Figure. 1 depicts the MSE performance as a function of the
signal-to-noise ratio (SNR) for the proposed approach and the
benchmark methods. The results demonstrate that the proposed
approach outperforms competing methods throughout the SNR
range.

Figure 2 illustrates the variation in the data size (T ) against
the MSE. It is evident that increasing the size of the data
leads to a corresponding improvement in the performance of
all the considered methods. In particular, the proposed method
consistently achieves a sustainable performance gain across all
data sizes.
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Fig. 1. Channel estimation MSE versus SNR comparison.
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In the final experiment, the SNR value is set to 4 dB
to compare the convergence rate of the proposed method
with other benchmark methods. The results indicate that
the proposed method achieves faster convergence and higher
estimation accuracy compared to ALS, ALS + LSH, and ALS
+ ELSC. Figure 3 illustrates this performance very well.
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VII. CONCLUSION

In this work, a two-stage approach for channel estimation
using tensor decomposition is introduced. Our method used
type-2 BTD to obtain the loading factor of a covariance matrix
tensor. A Toeplitz criterion is then enforced on the obtained
loading factor which is then minimized subsequently resulting
in the estimation of the channel coefficients. This combined
strategy markedly improves channel estimation performance.
Moreover, the core principle of our approach is versatile and
can be applied to other estimation problems involving tensors
with inherent structural properties.
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