
Low-Rank Triple Decomposition of Streaming
Tensors and Its Application to Video Completion

Thanh Trung Le∗§, Nguyen Hong Thinh∗, Luu Manh Ha∗, Tran Thi Thuy Quynh∗, Le Vu Ha∗,
Vy-Thuy-Lynh Hoang†, Karim Abed-Meraim‡, Philippe Ravier‡, Olivier Buttelli‡

∗ VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
† BRGM French Geological Survey, France

‡ PRISME Laboratory, University of Orleans, France

Abstract—Triple tensor decomposition (TriTD) has recently
emerged as a good alternative for the two classical CP/PARAFAC
and Tucker tensor decompositions. However, current state-of-the-
art TriTD methods are primarily designed for batch processing,
requiring the storage and processing the entire tensor data at
once. In this paper, we propose, for the first time, an effective
and efficient incremental method for online tensor decomposition
in the TriTD format. We validate the performance of our
method with the task of online video completion. Experimental
results demonstrate that our method outperforms state-of-the-art
streaming tensor decomposition methods.

Index Terms—Tensor decomposition, triple decomposition, on-
line learning, missing data, video completion

I. INTRODUCTION

Recently, Qi et al. [1] proposed a new tensor format for rep-
resenting three-way tensors using three simpler tensor factors
of the same order, called triple decomposition (TriTD). Given
a tensor X ∈ RI×J×K , its TriTD, denoted as X = [[A,B,C]],
is given by

Xi,j,k =
R

∑
r1=1

R

∑
r2=1

R

∑
r3=1

Ai,r2,r3Br1,j,r3Cr1,r2,k, (1)

where A ∈ RI×R×R, B ∈ RR×J×R, and C ∈ RR×R×K are tensor
factors of the third order. The smallest R satisfying (1) refers
to the triple rank of X .

TriTD can be regarded as an extension of the most
two widely-used tensor decompositions: CP/PARAFAC and
Tucker/HOSVD (see [2] for a good overview). We refer
readers to [1] for the relationship among these three decompo-
sitions. In practice, TriTD and its variants (e.g., non-negative
and hypergraph-regularized versions) have shown promise in
applications, such as image compression [3], network traffic
recovery [4], and data clustering [5].

In recent years, there has been a significant increase in the
demand for processing (big) data streams, particularly in the
context of streaming tensor decomposition [6]. Many online,
adaptive, and incremental methods have been proposed for
factorizing and tracking streaming tensors over time. Most of

§ This work was funded by the Postdoctoral Scholarship Programme of
Vingroup Innovation Foundation (VINIF), code VINIF.2024.STS.40. Corre-
sponding author: Thanh Trung Le (thanhletrung@vnu.edu.vn).

these methods are based on the two most well-known and
widely-used tensor formats: CP/PARAFAC and Tucker. These
methods are based on stochastic techniques (e.g., [7]–[9]),
recursive least-squares filtering (e.g., [10]–[12]), and Bayesian
inference (e.g., [13]–[15]), to name a few. There have also been
efforts to develop streaming tensor decomposition methods
under other formats, such as BTD [16]–[18], tensor train [19]–
[22], tensor ring [23]–[25], t-SVD [26], and UTV [27]. For
a comprehensive overview on online methods for streaming
tensor decomposition and tracking, we refer the reader to our
recent survey [6].

The recent emergence of TriTD highlights a gap in the ten-
sor literature, as no method has yet been specifically developed
for online triple tensor decomposition of streaming tensors.
TriTD offers a more balanced tensor representation compared
to CP and Tucker formats. The triple rank is not greater than
the CP rank or the middle value of the Tucker rank. This makes
TriTD a viable and compact alternative whenever the tensor
data can be effectively represented using CP or Tucker de-
compositions. In such cases, a low-rank tensor representation
via TriTD can also be achieved [1]. Consequently, TriTD is
applicable in scenarios where CP and Tucker decompositions
have been successful, thereby extending their potential to new
contexts. Moreover, the representation properties of tensor
formats, including TriTD, are preserved in the streaming
setting, similar to those in the batch setting. These observations
suggest that developing online, incremental, adaptive TriTD
methods for factorizing streaming tensors is a promising and
important research direction. In this paper, we address this
gap by proposing, for the first time, an efficient incremental
online method for factorizing streaming tensors in the TriTD
format. The proposed method, called OTD (which stands
for Online Triple Decomposition), effectively tracks low-rank
components of streaming tensors in the presence of noise,
missing data, and abrupt changes. Moreover, OTD successfully
addresses the task of video completion.

Notations: Lowercase letters represent scalars (e.g., x),
while boldface lowercase letters indicate vectors (e.g., x).
Matrices are denoted using boldface capital letters (e.g., X),
and tensors are represented using bold calligraphic letters
(e.g., X ). The (i1, i2, i3)-th element of X is denoted as



New DataOld Observations

Fig. 1: Online Triple Tensor Decomposition

Xi1,i2,i3 or X (i1, i2, i3). The k-th frontal slices of X is
expressed as X∶,∶,k or X (∶, ∶, k). The mode-n unfolding matrix
of X is denoted by [X ](n). The transpose operation is
indicated by (⋅)⊺, and the Frobenius norm is denoted as ∥ ⋅ ∥F .
The symbol ⊗ represents the Kronecker product. X ⪰ Y
(resp. ≻), then X−Y is a positive semidefinite (resp. positive
definite) matrix.

II. ONLINE TRIPLE TENSOR DECOMPOSITION

Without loss of generality, we assume that the third di-
mension of the underlying streaming tensor varies with time.
Accordingly, we define a streaming tensor Xt ∈ RI×J×Kt that
is observed sequentially in its frontal slices. At each time t,
Xt is formed by stacking new data Xt ∈ RI×J with the
previous data Xt−1 ∈ RI×J×Kt−1 along the third dimension
(i.e., Xt(∶, ∶, t) = Xt and Kt = Kt−1 + 1). See Fig. 1 for an
illustration.

Here, the new data Xt is assumed to consist of a main
component Lt plus a Gaussian noise Nt:1

Xt = Lt +Nt = [At](1)(IR ⊗C⊺t )[Bt]
⊺
(2) +Nt. (2)

Here, two factors At ∈ RI×R×R and Bt ∈ RR×J×R are of
fixed size, and we refer them to as non-temporal factors. The
matrix Ct ∈ RR×R is the t-th frontal slice of the temporal
factor Ct ∈ RR×R×Kt .

While it is possible to apply batch TriTD methods (e.g., [1])
to decompose Xt at each time t, this approach becomes ineffi-
cient and ineffective regarding both computational complexity
and memory storage in online settings, particularly when Kt

is huge and/or when factors At and Bt vary slowly over time.
Therefore, to enable online processing, we utilize the following
objective function:

{At,Bt,Ct} = argmin
A,B,C

{ft(A,B) =
Kt

∑
k=1

λKt−kℓ(A,B∣Xk)},

(3)

where the loss function ℓ(⋅) is defined as follows

ℓ(A,B ∣ Xk) =min
Ck

ℓ̃(Ck ∣Xk,A,B), (4)

1Note that if [[A,B,C]] = X , the k-th frontal slice of X can be expressed
as X∶,∶,k = [A](1)(IR ⊗ C⊺∶,∶,k)[B]

⊺
(2) ∀k, thanks to (1).

with

ℓ̃(Ck ∣Xk,A,B) = ∥Xk − [A](1)(IR ⊗C⊺k)[B]
⊺
(2)∥

2

F
, (5)

and 0 < λ ≤ 1 is a forgetting factor to reduce the effect
of past observations. When λ = 1, the objective function
ft(A,B) in (3) is a sum of loss functions over all observations
(aka tensor slices) {Xk}

t
k=1. This formulation is useful in

stationary environments where the factors A and B do not
change with time. When 0 < λ < 1, the weight λKt−k becomes
small if Kt − k is large, indicating that the contribution of
ℓ(A,B ∣ Xk) to the objective function ft(A,B) is minimal
for values of k far from t. In nonstationary and dynamic
environments where older observations may no longer reflect
accurately the true underlying data model at time t, the use
of 0 < λ < 1 exponentially discounts the effect of these
observations. This ensures that observations from the distant
past have a significantly reduced influence in the objective
function compared to more recent ones.

Assuming that the non-temporal factors are either fixed or
change slowly with time (At ≊At−1 and Bt ≊ Bt−1) and the
triple rank R is fixed, we can estimate the t-th frontal slice
of the temporal factor Ct upon the arrival of new data Xt

from Ct = argminC ℓ̃(C ∣ Xt, At−1,Bt−1) in (4). Now, at
each time t, given a set of estimates {Ck}

Kt

k=1, we propose to
minimize the following surrogate function f̃t(⋅) of ft(⋅):

{At,Bt} = argmin
A,B

f̃t(A,B), where (6)

f̃t(A,B) =
Kt

∑
k=1

λt−k
∥Xk − [A](1)(IR ⊗C⊺k)[B]

⊺
(2)∥

2

F
. (7)

It stems from the three observations that: (i) f̃t(⋅) is an upper
bound of ft(⋅) ∀t; (ii) solving (6) is “easier” than (3); and
(iii) in our convergence analysis, we show that f̃t(At,Bt)

and ft(At,Bt) converge almost surely to the same limit.
Consequently, the solution {At,Bt} obtained by minimizing
f̃t(A,B) coincides with the solution of ft(A,B) when t goes
to infinity.

III. PROPOSED METHOD

On the arrival of new data Xt at each time t, our optimiza-
tion procedure follows two steps: (i) First, we estimate Ct

using previous estimates At−1 and Bt−1, which then serve as
the t-th frontal slice of Ct. (ii) Next, we recursively update
At and Bt based on the newly estimated Ct along with At−1
and Bt−1.

1) Estimation of temporal tensor factor Ct: Inter-
estingly, we exploit that minimizing the loss function
ℓ̃(C ∣ Xt,At−1,Bt−1) with regularization at time t is equiv-
alent to

Ct = argmin
C∈RR×R

∥vec(Xt) −Ht vec(C)∥
2

F
+ ρC∥vec(C)∥

2

2
,

where Ht =
R

∑
r3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bt−1(∶, ∶, r3) ⊗At−1(∶,1, r3)⊺

Bt−1(∶, ∶, r3) ⊗At−1(∶,2, r3)⊺

. . .
Bt−1(∶, ∶, r3) ⊗At−1(∶,R, r3)

⊺

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺

. (8)



Here, we introduce the regularization term ρC∥vec(C)∥
2
2 to

enhance the conditioning of the optimization, particularly
in situations where Ht may be singular or nearly singular.
Interestingly, the problem (8) is a convex regularized least-
squares (LS) minimization, and the closed-form solution for
Ct is given by

vec(Ct) = (H
⊺
tHt + ρCIR)

−1
H⊺t vec(Xt). (9)

It is also worth noting that the matrix Ht in (8) is of a
Kronecker-structure. We can speed up the LS estimation by
utilizing randomized/sketching LS methods [28] to solve (8)
more efficiently.

2) Estimation of non-temporal factors At and Bt: We
employ the alternating minimization framework to solve (6).
In what follows, we present the update rule of At only while
Bt is updated in the same way as At.

The factor At is obtained from sub-problems of (6):

At = argmin
A∈RI×R×R

Kt

∑
k=1

λKt−k∥Xk − [A](1)Wk,A∥
2

F

+ η∥A −At−1∥2F , (10)

where Wk,A = (IR ⊗C
⊺
k)[Bt−1]⊺(2). The penalty term η∥A−

At−1∥2F is included to regulate the time variation of A as well
as to establish momentum for their estimate at time t.

Update rules: We propose the following incremental recur-
sive update rule to address (10):

[At](1) = [At−1](1) + (Xt − [At−1](1)Wt,A)W
⊺
t,AQ−1t,A

+ λη([At−1](1) − [At−2](1))Q
−1
t,A, (11)

where Qt,A of size R2 ×R2 is recursively updated over time
as follows

Qt,A = λQt−1,A + (1 − λ)ηIR2 +Wt,AW⊺
t,A. (12)

To enable the recursive procedures (11), at t = 0, we set
Q0,A = IR2 , initialize A0 at random, and define A−1 =
0I×R×R. Here, we observe that the second term in (11)
comes from the first-order optimality condition of the original
problem (6). The third term, on the other hand, represents
momentum of the solutions, which aids in accelerating the
optimization process [29].

Derivations of (11): Taking the first derivative of (10) to
zeros leads to

[At](1)
Kt

∑
k=1

λKt−k(Wk,AW⊺
k,A + ηIR2)

=
Kt

∑
k=1

λKt−kXkW
⊺
k,A + η[At−1](1). (13)

Let us denote the right-hand side of (13) as Rt,A and obtain
Rt,A = λRt−1,A +XtW

⊺
t,A +η([At−1](1) −λ[At−2](1)). We

then express (13) as

[At](1)Qt,A =Rt,A

= λRt−1,A +XtW
⊺
t,A + η([At−1](1) − λ[At−2](1))

= λ[At−1](1)Qt−1,A +XtW
⊺
t,A + η([At−1](1) − λ[At−2](1))

= [At−1](1)(λQt−1,A +(1 − λ)ηIR2 +Wt,AW⊺
t,A)

+XtW
⊺
t,A−[At−1](1)(Wt,AW⊺

t,A + (1 − λ)ηIR2)

+η([At−1](1) − λ[At−2](1))

= [At−1](1)Qt,A + (Xt − [At−1](1)Wt,A)W
⊺
t,A

+ λη([At−1](1) − [At−2](1)). (14)

Due to the terms (1 − λ)ηIR2 ≻ 0, Wt,AW⊺
t,A ⪰ 0 ∀t, and

Q0,A = IR2 ≻ 0 initialized at t = 0, we can ensure that Qt,A is
always positive-definite and, therefore, invertible. Accordingly,
multiplying both sides of (14) with Q−1t,A results in the update
rule (11).

Parameter selection: In practice, the regularization parame-
ters η and ρC can be selected within the range [10−2,10−4]
to achieve reasonable performance across various settings. The
forgetting factor λ is typically set around 0.5 in most scenarios.
For fast time-varying environments, we can reduce the value
of λ to facilitate the tracking ability of OTD. While for slowly
time-varying or stationary cases, λ should be close to 1.

3) Dealing with missing data: Assume that missing data of
Xt can be represented by a binary mask Ωt, where Ωt(i, j) = 0
indicates that Xt(i, j) is missing and Ωt(i, j) = 1 if it is
observed. We denote the slice Xt with its observation mask Ωt

as (Xt)Ωt and use ∣Ωt∣ to represent the number of observed
entries in Xt.

Estimation of Ct: Let xΩt = (vec(Xt))Ωt ∈ R∣Ωt∣, and
HΩt ∈ R∣Ωt∣×R2

is a sub-matrix of Ht by selecting rows
corresponding to observed entries in xΩt . In the presence of
missing data, the solution of problem (8) now becomes

vec(Ct) = (H
⊺
Ωt
HΩt + ρCIR2)

−1
H⊺Ωt

xΩt . (15)

To prevent the underdetermined problem and guarantee the
unique optimal solution for Ct as defined in (15), the number
of observed entries, ∣Ωt∣, must exceed R2. If ∣Ωt∣ < R

2, addi-
tional information about Ct is required, such as its sparsity.
In such cases, other regularized LS methods can be applied,
depending on the available side information about Ct. These
methods may include LASSO, ℓ0 regularization, elastic nets,
or total variation regularization.

Estimation of At and Bt: We exploit that the second term
in (11) involves the error between the new data Xt and its
recovered version based on the previous estimation At−1.
While the remaining terms are independent of new data. Con-
sequently, we only modify the second terms by disregarding
the missing locations, leading to the new update rules as:

[At](1)= [At−1](1) + (Xt − [At−1](1)Wt,A)Ωt
W⊺

t,AQ−1t,A
+λη([At−1](1) − [At−2](1))Q−1t,A. (16)

Here, Qt,A is updated recursively as in (12).



IV. PERFORMANCE ANALYSIS

A. Computational Complexity

The computational complexity of OTD comes from two
stages: (i) the estimation of Ct and (ii) the estimation of
At and Bt. In stage (i), forming Ht from At−1 and Bt−1
requires O(IJR3 + IJR2) flops, while computing the least-
squares solution Ct needs O(IJR4) flops. Consequently, the
total complexity for this stage is O(IJR4) which reduces
to O(∣Ω∣R4) in the case of missing data. In stage (ii),
the computation of Wt,A and Wt,B incurs a total cost of
O((I+J)R4) flops. Computing Qt,A, Qt,B and their inverses
requires O((I+J)R4+R6) flops in total. Finally, the recursive
updates of two non-temporal factors At and Bt demand
O((IJ + I +J)(R4 +R2)) flops. To sum up, OTD requires a
total computational complexity of O(R4max{IJ,R2}) flops.
Since the tensor dimension is often greater than the rank
(IJ > R2), the overall complexity of OTD is O(IJR4) flops.

B. Convergence Analysis

To support our theoretical results, we make the following
three assumptions: (A1) Tensor slices {Xt}

∞
t=1 are norm-

bounded matrices, i.e., ∥Xt∥F <Mx < ∞. The main
components {Lt}

∞
t=1 are deterministic, while the entries

of noise components {Nt}
∞
t=1 are i.i.d. from a distribution

with a compact support. (A2) The triple rank R is fixed, tensor
factors A and B are norm-bounded and remain unchanged
over time. (A3) The surrogate function f̃(⋅) of f(⋅) is m-
strongly multi-block convex, i.e., ∇2f̃([A](1), ⋅) ⪰ mAI ≻ 0

and ∇2f̃([B](2), ⋅) ⪰ mBI ≻ 0 with mA,mB > 0. Indeed,
(A1) is a common assumption in online contexts and it
applies to many real-life applications, as datasets are typically
bounded. (A2) represents the stationary condition which
is also commonly used to analyze the convergence and
asymptotic behavior of online methods. Additionally, the
regularization term in (10) helps ensure that (A3) is satisfied.
Now, given (A1-A3), the following theorem demonstrates the
convergence of OTD.

Theorem 1. Assuming that assumptions (A1-A3) are
satisfied and λ = 1, let Dt = {At,Bt} the solution
generated by OTD at time t. As t → ∞, Dt converges
almost surely to a stationary point of ft(⋅).

Proof Sketch: To prove Theorem 1, we utilize the asymp-
totic convergence framework established for our robust CP
decomposition of streaming tensors in [30]. It contains three
main stages. (S1) The solutions {Dt}

∞
t=1 are bounded, and their

time variation satisfies ∥Dt −Dt−1∥F → O(1/t) a.s.; (S2) The
non-negative sequence {f̃t(Dt)}

∞
t=1 forms a quasi-martingale

that converges almost surely, and we have f̃t(Dt)− ft(Dt) →

0 a.s.; (S3) The objective function ft(⋅) is continuously
differentiable and Lipschitz, and as t→∞, ∇ft(Dt) → 0. Due
to the space limit, we omit the details on this proof.

200 400 600 800 1000

Time Index

10
-4

10
-2

10
0 Abrupt

change

(a) Noisy + full observations.

200 400 600 800 1000

Time Index

10
-4

10
-2

10
0

full observations

40% missing data

80% missing data

Abrupt

change

(b) Missing + noise σn = 10−2.

Fig. 2: Effect of noisy and missing data on performance of the
proposed method. The streaming tensor has size 100 × 100 ×
1000 with triple-rank R = 5. An abrupt change (data drift)
occurs at t = 600.

V. NUMERICAL RESULTS

In this section, we conduct several numerical experiments
to demonstrate the effectiveness of the proposed method with
both synthetic and real-world datasets.

A. Synthetic Data

We generate a streaming tensor Xt ∈ RI×J×t, where the t-th
frontal slice Xt ∈ RI×J is produced under the following model

(Xt)Ωt
= ([At](1)(IR ⊗C⊺t )[Bt]

⊺
(2) + σ

2
nNt)

Ωt

. (17)

Here, Ωt ∈ RI×J is a binary matrix indicating that the (i, j)-
th element of Xt is observed if Ωt(i, j) = 1 and missing
if Ωt(i, j) = 0. The frontal slice Ct ∈ RI×J and the noise
Nt ∈ RI×J are Gaussian matrices with entries that are i.i.d.
from N(0,1), and σn > 0 controls the noise level. Two non-
temporal tensor factors At and Bt are modeled as follows

At = (1 − ϵ)At−1 + ϵNAt , Bt = (1 − ϵ)Bt−1 + ϵNBt ,

where NAt ∈ RI×R×R and NBt ∈ RR×J×R represent Gaussian
noise with zero mean and unit variance; 0 ≤ ϵ ≤ 1 controls the
time variation. At t = 0, A0 and B0 are initialized as Gaussian



Park

Lobby

Highway

Walk

MissingGroundtruth Proposed OLSTEC ATD ATT

Fig. 3: Performance of tensor-based methods for online video completion with 90% missing data.

tensors with zero mean and unit variance entries. To evaluate
the algorithm’s performance, we measure the following error

ER(Xtr,Xest) = ∥Xtr −Xest∥F /∥Xtr∥F , (18)

where Xtr and Xest are the ground truth and the reconstructed
tensor.

In this experiment, we used a streaming tensor Xt of
size 100 × 100 × 1000 with a rank R = 5, testing various
settings of noisy and missing data. We considered three noise
levels: σn = 1, σn = 10

−1, and σn = 10
−2. Additionally, we in-

vestigated two missing ratio of 40% and 80%. The factor ϵ was
fixed at 10−3 to create a slowly time-varying environment.
An abrupt change was introduced at t = 600 (i.e., ϵ = 1) to
evaluate how quickly OTD can converge in nonstationary
conditions. The forgetting factor of OTD was set to 0.5, while
its regularized parameters are fixed at 10−2. Fig. 2(a) illustrates
the performance of OTD in relation to the noise level σn.
At each noise level, OTD always converges to a steady-state
error floor. As expected, lower values of σn correspond to
better estimation accuracy for OTD. Fig. 2(b) demonstrates
the impact of missing data on OTD’s performance. We observe
that OTD effectively handles missing data. When the missing
ratio is not too high, its performance is comparable to that
with complete observations. However, when the missing ratio
is high (e.g., 80%), OTD converges more slowly, yet its error
floor remains close to that achieved with full data.

B. Real-world Video Datasets

In this task, we demonstrate its effectiveness using real
video datasets, comparing it to state-of-the-art tensor-based
online video completion methods. These methods include the
CP-based method OLSTEC [10], the Tucker-based method
ATD [12], and the tensor-train-based method ATT [22].

We use four publicly video datasets, including “Walk”,
“Highway”, “Lobby”, and “Park”. 2 In our experiment, we

2http://jacarini.dinf.usherbrooke.ca/dataset2014

considered three case studies of the missing ratio: 10%, 50%,
and 90%. To have a fair comparison, we select tensor ranks
such that all methods share the similar space computational
complexity. Specifically, we set the CP rank to 16, the Tucker
rank to [12,12,12], the tensor-train rank to [6,6], and the
triple rank to 6. The algorithmic parameters for the com-
pared methods were kept at their default settings. We used
the same relative metric ER(Xtr,Xest) in (18) to measure
the effectiveness of the algorithms. The performance of the
algorithms is illustrated graphically in Fig. 3 and statistically
summarized in Tab. 1. The results demonstrate that our method
achieves competitive performance compared to other tensor-
based approaches for online video completion, particularly
under high missing ratios.

VI. CONCLUSIONS

In this paper, we developed an online triple tensor de-
composition method for factorizing streaming tensors over
time, called OTD. Experiments indicate that our method
outperforms other state-of-the-art tensor-based techniques for
the task of online video completion with real datasets. The
convergence of OTD is theoretically guaranteed in stationary
environments under mild conditions. Future works will explore
its convergence behavior in nonstationary environments and
develop a variant capable of tracking the triple rank over time.

REFERENCES

[1] L. Qi, Y. Chen, M. Bakshi, and X. Zhang, “Triple decomposition and
tensor recovery of third order tensors,” SIAM J. Matrix Anal. Appl.,
vol. 42, no. 1, pp. 299–329, 2021.

[2] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[3] F. Wu, C. Li, and Y. Li, “Manifold regularization nonnegative triple
decomposition of tensor sets for image compression and representation,”
J. Optim. Theory Appl., vol. 192, no. 3, pp. 979–1000, 2022.

[4] Z. Ming, Z. Qin, L. Zhang, Y. Xu, and L. Qi, “Network traffic recovery
from link-load measurements using tensor triple decomposition strategy
for third-order traffic tensors,” J. Comput. Appl. Math., vol. 447, p.
115901, 2024.



TABLE I: Averaged relative error of adaptive tensor decompositions on incomplete video sequences.

D
at

as
et

Si
ze

M
is

si
ng

Adaptive Tensor-based Methods Methods for Video Completion

OLSTEC ATD ATT OTD

ER Time(s) ER Time(s) ER Time(s) ER Time(s)

W
al
k

24
0
×
35
2×

×
12
00

10% 0.0825 153.9 0.1102 50.86 0.1156 47.93 0.1021 51.72

50% 0.2181 92.67 0.1638 48.90 0.2561 46.87 0.1353 49.24

90% 0.2704 56.78 0.2723 40.62 0.2694 45.26 0.1735 44.31

H
ig
hw

ay

32
0
×
24
0×

×
17
00

10% 0.0491 192.2 0.0603 68.91 0.1769 63.02 0.0714 69.17

50% 0.1129 141.9 0.1478 64.16 0.1921 61.86 0.1105 64.78

90% 0.1652 81.73 0.2418 55.34 0.2217 47.98 0.1961 50.21

Lo
bb

y

12
8
×
16
0×

×
15
46

10% 0.0312 53.88 0.0466 24.60 0.1103 15.54 0.0191 20.21

50% 0.0798 44.92 0.1091 18.26 0.1208 14.52 0.0416 17.78

90% 0.1592 27.28 0.2420 16.34 0.2326 14.48 0.1616 16.87

Pa
rk

22
8
×
35
2×

×
60
0

10% 0.0269 105.3 0.0622 28.32 0.0945 34.83 0.0411 30.13

50% 0.0527 68.02 0.1029 23.06 0.1048 31.54 0.0883 26.42

90% 0.1031 38.24 0.1562 20.51 0.1337 27.20 0.1088 21.98

[5] Q. Liao, Q. Liu, and F. A. Razak, “Hypergraph regularized nonnegative
triple decomposition for multiway data analysis,” Sci. Rep., vol. 14,
no. 1, p. 9098, 2024.

[6] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “A contem-
porary and comprehensive survey on streaming tensor decomposition,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 11, pp. 10 897–10 921, 2023.

[7] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating
online CP decompositions for higher order tensors,” in Proc. ACM KDD,
2016, pp. 1375–1384.

[8] H. Kasai and B. Mishra, “Low-rank tensor completion: A Riemannian
manifold preconditioning approach,” in Proc. ICML, 2016, pp. 1012–
1021.

[9] C. Zeng and M. K. Ng, “Incremental CP tensor decomposition by
alternating minimization method,” SIAM J. Matrix Anal. Appl., vol. 42,
no. 2, pp. 832–858, 2021.

[10] H. Kasai, “Fast online low-rank tensor subspace tracking by CP decom-
position using recursive least squares from incomplete observations,”
Neurocomput., vol. 347, pp. 177–190, 2019.

[11] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “A fast
randomized adaptive CP decomposition for streaming tensors,” in Proc.
IEEE ICASSP, 2021, pp. 2910–2914.

[12] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “Tracking
online low-rank approximations of higher-order incomplete streaming
tensors,” Patterns, vol. 4, no. 6, p. 100759, 2023.

[13] Y. Du, Y. Zheng, K.-c. Lee, and S. Zhe, “Probabilistic streaming tensor
decomposition,” in Proc. IEEE ICDM, 2018, pp. 99–108.

[14] Z. Pan, Z. Wang, and S. Zhe, “Streaming nonlinear Bayesian tensor
decomposition,” in Proc. UAI, 2020, pp. 490–499.

[15] S. Fang, A. Narayan, R. Kirby, and S. Zhe, “Bayesian continuous-time
Tucker decomposition,” in Proc. ICML, 2022, pp. 6235–6245.

[16] E. Gujral and E. E. Papalexakis, “OnlineBTD: Streaming algorithms to
track the block term decomposition of large tensors,” in Proc. IEEE
DSAA, 2020, pp. 168–177.

[17] L. T. Thanh, K. Abed-Meraim, R. Philippe, and B. Olivier, “A novel
tensor tracking algorithm for block-term decomposition of streaming
tensors,” in Proc. IEEE SSP, 2023, pp. 571–575.

[18] A. A. Rontogiannis, E. Kofidis, and P. V. Giampouras, “Online rank-

revealing block-term tensor decomposition,” Signal Process., vol. 212,
p. 109126, 2023.

[19] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and R. Boyer, “Adaptive
algorithms for tracking tensor-train decomposition of streaming tensors,”
in Proc. EUSIPCO, 2020, pp. 995–999.

[20] L. T. Thanh, K. Abed-Meraim, N. Linh Trung, and A. Hafiane, “Robust
tensor tracking with missing data under tensor-train format,” in Proc.
EUSIPCO, 2022, pp. 832–836.

[21] D. Kressner, B. Vandereycken, and R. Voorhaar, “Streaming tensor train
approximation,” SIAM J. Sci. Comput., vol. 45, no. 5, pp. A2610–A2631,
2023.

[22] T. T. Le, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “A novel
recursive least-squares adaptive method for streaming tensor-train de-
composition with incomplete observations,” Signal Process., vol. 216,
p. 109297, 2024.

[23] Z. Huang, Y. Qiu, J. Yu, and G. Zhou, “Multi-aspect streaming tensor
ring completion for dynamic incremental data,” IEEE Signal Process.
Lett., vol. 29, pp. 2657–2661, 2022.

[24] J. Yu, T. Zou, and G. Zhou, “Online subspace learning and imputation
by tensor-ring decomposition,” Neural Netw., vol. 153, pp. 314–324,
2022.

[25] Y. Yu and H. Li, “Tracking tensor ring decompositions of streaming
tensors,” Comput. Appl. Math., vol. 44, no. 1, pp. 1–30.

[26] K. Gilman, D. A. Tarzanagh, and L. Balzano, “Grassmannian optimiza-
tion for online tensor completion and tracking with the t-SVD,” IEEE
Trans. Signal Process., vol. 70, pp. 2152 – 2167, 2022.

[27] M. Vandecappelle and L. D. Lathauwer, “Updating the multilinear UTV
decomposition,” IEEE Trans. Signal Process., vol. 70, pp. 3551–3565,
2022.

[28] D. P. Woodruff et al., “Sketching as a tool for numerical linear algebra,”
Found. Trends Theor. Comput. Sci., vol. 10, no. 1–2, pp. 1–157, 2014.

[29] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural Netw., vol. 12, no. 1, pp. 145–151, 1999.

[30] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “Robust
tensor tracking with missing data and outliers: Novel adaptive CP
decomposition and convergence analysis,” IEEE Trans. Signal Process.,
vol. 70, pp. 4305 – 4320, 2022.


