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Abstract—Subspace tracking is a fundamental problem in
signal processing, where the goal is to estimate and track the
underlying subspace that spans a sequence of data streams
over time. In high-dimensional settings, data samples are often
corrupted by non-Gaussian noises and may exhibit sparsity.
This paper explores the alpha divergence for sparse subspace
estimation and tracking, offering robustness to data corruption.
The proposed method outperforms the state-of-the-art robust
subspace tracking methods while achieving a low computa-
tional complexity and memory storage. Several experiments are
conducted to demonstrate its effectiveness in robust subspace
tracking and direction-of-arrival (DOA) estimation.

Index Terms—Sparse subspace estimation, Sparse subspace
tracking, robust estimation, data corruption, non-Gaussian, out-
liers, α-divergence.

I. INTRODUCTION

With the ubiquity of big data streams, modern online appli-
cations are continuously generating massive volumes of high-
velocity data [1]. The dynamic and evolving nature of such
data streams presents significant challenges for conventional
data mining techniques, which often assume access to static or
batch data. In many scenarios, data samples arrive sequentially,
and it is desirable to update subspace estimates in (near) real
time without revisiting old observations. Subspace tracking
(ST) addresses this need by estimating and continuously updat-
ing a low-dimensional subspace that captures the underlying
structure of streaming data [2].

Modern data are often incomplete, unreliable, or corrupted
due to collection processes, inconsistencies, the presence of
non-Gaussian noise, and sparse outliers [3]. High dimension-
ality further exacerbates these issues by increasing computa-
tional and memory demands, while also degrading algorithmic
performance. A principled and effective way to mitigate these
challenges is to exploit the empirical observation that high-
dimensional data streams often lie near a low-dimensional and
sparse subspace that can evolve over time [4], [5]. In the
presense of data corruption, the classical subspace tracking
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problem naturally extends to the more general and challenging
task of robust sparse subspace tracking.

Several ST algorithms have been proposed in recent years
to address the challenges posed by data corruption [5].
Broadly, these methods fall into two categories: (ii) algo-
rithms designed to handle outliers and missing data, and
(ii) algorithms designed to cope with abrupt or impulsive
noise. The first category includes several notable approaches
such as Grassmannian-based methods (e.g., GROUSE [6],
GRASTA [7], pROST [8]), recursive least squares-based meth-
ods (e.g., PETRELS [9], PETRELS-ADMM [10], PETRELS-
CFAR [11]), recursive projected compressive sensing-based
methods (e.g., ReProCS’s variants [12]–[14]), and adaptive
projected subgradient methods (e.g., [15]–[17]). Although
these approaches are effective in handling outliers and missing
entries, they typically rely on the assumption of slowly vary-
ing subspaces over time, making them less robust to abrupt
changes or impulsive noise.

The second group includes robust variants of the Pro-
jection Approximation Subspace Tracking (PAST) algorithm
(RPAST [18], MCC-PAST [19], TRPAST [20]); robust vari-
ants of adaptive or online power iteration methods (e.g.,
αFAPI [21], ROBUSTQR [22]); adaptive Kalman filtering
(KFVM [23]), weighted recursive least-squares method (e.g.,
ROBUSTA [11]). These methods are designed to deal with
impulsive noise but are generally sensitive to sparse cor-
ruptions and missing data. It is also worth noting that the
aforementioned methods are not inherently designed for sparse
subspace tracking. In the literature, only few sparse ST meth-
ods have been proposed. Notable examples include OIST [24],
OVBSL [25], and OPIT [26]. However, these methods are not
specifically designed to handle data corruption, particularly
non-Gaussian noise. This limitation motivates the development
of a new sparse subspace tracking algorithm that can both
exploit sparsity in the subspace structure and maintain robust-
ness against various types of data corruption. In this paper,
we introduce αOPIT, an robust version of OPIT that leverages
an α-divergence based weighting scheme for sparse subspace
tracking with data corruption. Specifically, our method adap-
tively downweights anomalous/corrupted observations using



TABLE I: Conventional Notations

x,x,X,X scalar, vector, matrix, and set/support
xi or x(i) i-th entry of x
xij or X(i, j) (i, j)-th entry of X
X(i, ∶), X(∶, j) i-th row and j-th column of X
X⊺,X−1 transpose, inverse of X
QR(X) QR decomposition of X
∥ ⋅ ∥F Frobenius norm
tr{⋅} trace operator
E{⋅} expectation operator
N(µ,σ2

) Gaussian distribution with mean µ and vari-
ance σ2

Dα{g∥f} α-divergence between two distributions g
and f

α-divergence, thereby enhancing its robustness against outliers
and non-Gaussian noise. Additionally, αOPIT incorporates a
recursive covariance and hence subspace update with a forget-
ting factor, allowing for efficient online adaptation to evolving
subspaces in streaming data. Experimental results indicate that
αOPIT consistently outperforms existing subspace tracking
algorithms, particularly under challenging conditions involving
non-Gaussian and impulsive noise, offering robustness and
improved tracking accuracy.

Paper Organization: The rest of this paper is organized as
follows. Section II provides background on subspace tracking,
the OPIT algorithm, and α-divergence. Section III introduces
our proposed method. Section IV presents the experimental
results, and Section V concludes the paper. For easy reference,
Table I summarizes frequently used notations in this paper.

II. BACKGROUND

In this section, we begin by formulating the problem of
robust subspace tracking, followed by a brief overview of the
classical OPIT method. We then introduce the α-divergence,
which is employed to develop a weighting scheme that miti-
gates the influence of corrupted data.

A. Subspace Tracking

Assume that at each time t, we collect a data sample xt ∈ Rn

which is generated under the following model

xt =Awt + νt, t = 1,2, . . . , T. (1)

Here, A ∈ Rn×r is the underlying subspace matrix with r < n,
wt ∈ Rr is a weight vector, and ℓt = Awt represents the
low-rank component of xt. The vector νt ∈ Rn denotes data
corruption present in the observation. The problem of subspace
tracking can be stated as follows:

Subspace Tracking Problem: On the arrival of a new
data sample xt at each time t, our goal is to estimate the
underlying subspace A that spans the low-rank compo-
nents {ℓi}ti=1.

Algorithm 1: THRESHOLDING - Ŝ = τ(S, k)
Input: Matrix S and a thresholding factor k
Main Procedure:
[n, r] = size(S)
for i = 1,2, . . . , r do

si = S(∶, i)
Select the set Tt that contains indices of k strongest

entries (w.r.t. absolute value) of si

Form Ŝ(j, i) = {
si(j) if j ∈ Tt
0 if j /∈ Tt

end
End

When the subspace matrix A is sparse, robust ST becomes
robust sparse subspace tracking (SST) problem.1

B. OPIT Method

Online Power Iteration by Thresholding (OPIT) offers a fast
method for tracking the underlying sparse subspace of data
streams over time [26]. It builds upon the standard Power
Iteration (PI) method for computing the dominant eigenvectors
of the covariance matrix Ct = E{xtx

⊺
t }. Particularly at the k-

th iteration, PI updates

Sℓ ←CtUℓ−1, Uℓ
Q-factor← QR(Sℓ), (2)

where QR(⋅) denotes the QR factorization [2]. PI starts from
an initial matrix U0 ∈ Rn×r and returns an orthonormal matrix
Uℓ, where L is the number of iterations. OPIT modifies
PI by recurisvely updating the “scaled” version of Ct and
introducing a forgetting factor 0 < β ≤ 1 to exponentially
discount the effect of old observations

Rt = βRt−1 + xtx
⊺
t , (3)

where Ct = t−1Rt. According, OPIT rewrites the first step
of (2) as follows

St =RtUt−1 = βRt−1Ut−1 + xtz
⊺
t , (4)

where zt =U⊺t−1xt. As small perturbations do not significantly
affect the performance of power methods [27, Proposition 2],
OPIT derives the following rule

St ≃ βSt−1Et−1 + xtz
⊺
t , (5)

where Et−1 = U⊺t−1Ut−2. After that, OPIT employs the
threholding operation on (5) before employing the QR fac-
torization of St, see Algorithm 1. We refer the readers to our
work [26] for further details. Since OPIT is not inherently
designed to handle data corruption, we incorporate the α-
divergence (introduced in the following subsection) to enhance
its robustness.

1In nonstationary environments, the subspace matrix A can be slowly
varying with time, i.e., A =At. Our method not only estimates it accurately
but also effectively tracks its variation over time. See Fig. 2 for an illustration.



Algorithm 2: αOPIT - ONLINE POWER ITERATION BY

THRESHOLDING WITH α DIVERGENCE

Input: {xt}
T
t=1,xt ∈ Rn, rank r, a forgetting factor

0 ≤ λ ≤ 1, alpha divergence with parameter 0 < α < 1,
0 < p ≤ 2, and a thresholding factor k:

k = {
⌊(1 − ωsparse)n⌉ if ωsparse is given,
⌊10r logn⌉ if ωsparse is unknown,

where ωsparse is the sparsity level of the subspace.
Initialization:

Any U0 ∈ Rn×r , S0 = 0n×r, and E0 = Ir×r
Main Procedure:

for t = 1,2, . . . , T do
wt =U

⊺

t−1xt O(nr)

et = xt −Ut−1wt O(nr)

ωt = exp ( −
1 − α

2
∥et∥

p
F ) O(n)

St = (1 − λ)St−1Et−1 + λωtxtw
⊺

t O(nr2 + nr)

Ŝt = τ(St, k) O(nr + rk log k)

Ut = QR(Ŝt) O(nr2)

Et =U
⊺

t−1Ut O(nr2)
end

End
Output: UT

C. Alpha Divergence

The α-divergence is a family of measures used to quan-
tify the difference between two probability distributions [28].
Particularly given two distributions g(θ) and f(θ), its α-
divergence Dα{g ∥ f} is defined as

Dα{g ∥ f} =
1

α(1 − α)
[∫ g(θ)αf(θ)1−α dθ − 1] , (6)

where 0 < α < 1 is a tunable parameter to control the
asymmetry of the divergence.2 Here, (6) can be considered
as a generalization of the well-known Kullback–Leibler (KL)
divergence. In particular, limα→1Dα(g ∥ f) = KL(g ∥ f) and
limα→0Dα(g ∥ f) = KL(f ∥ g). The α divergence can offer
robustness to several types of non-Gaussian noises which is
exploited in the next section.

III. PROPOSED METHOD

In this section, we introduce a novel robust variant of
OPIT, called αOPIT, which is designed to enhance OPIT’s
robustness and effectiveness against data corruption. The pro-
posed method incorporates advanced weighting and subspace
estimation techniques derived from α-divergence and OPIT,
allowing it to handle non-Gaussian noise and high-dimensional
settings. In what follows, we detail how α-divergence is
incorporated into OPIT to improve its robustness.

Following the robust statistical approach for sample covari-
ance estimation proposed in [21], we first modify the “scaled”
covariance matrix (3) as follows

Rt = (1 − λ)Rt−1 + λωtxtx
⊺
t , (7)

2In the literature, there exist some other forms of α-divergence, see [28]
for more details.
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Fig. 1: The weight ωt is computed based on α divergence
with p = 2. When the residual is large, ωt approaches zero;
conversely, when the residual is small, ωt approaches one.

where 1 − λ plays the same role as to the forgetting factor β
and the weight ωt is chosen as

ωt = exp(−
1 − α
2
∥xt −Ut−1U

⊺
t−1xt∥

p

F
) , (8)

with 0 < α < 1 and 0 < p ≤ 2. Here, Ut−1 denotes the previous
estimate of the subspace matrix A at time t − 1. The residual
between the data observation and its projection is defined as
∥et∥F = ∥xt−Ut−1U

⊺
t−1xt∥F . See Fig. 1 for an illustration. A

large residual suggests that xt may not lie within the current
subspace and could be a corrupted data sample. In such cases,
the corresponding weight ωt becomes small (close to zero),
reducing the influence of the corrupted data. Conversely, as
the residual approaches zero, ωt approaches 1, indicating that
the data sample is clean and should fully contribute to the
subspace update.

The use of the weight ωt in (8) is motivated from the fol-
lowing observation. The signal model (1) implies the empirical
distribution g(x,U) of data samples is a mixture of a true
one f(x,U) (corresponding to the low-rank signal) and a
contaminated component, i.e.,

g(x,U) = (1 − δ)f(x,U) + δh(x), (9)

where h(x) represents impulsive or non-Gaussian noises and
0 < δ < 1 is denotes a trade-off parameter between two distri-
butions. Accordingly, the α divergence Dα(g(x,U)∥f(x,U))
provides a robust estimation criterion for estimating the under-
lying subspace as follows

A = argmin
U

Dα{g(x,U)∥f(x,U)}. (10)

Since g(x,U) is generally unknown in practice, the work [20]
indicated that, in such cases, (10) reduces to

A = argmax
U

1

1 − α

t

∑
k=1

f(xk,U)1−α. (11)



As indicated in our companion work [21], (11) is approxi-
mately equivalent to

A = argmin
U

t

∑
k=1

ω̃k ∥xk −UU⊺xk∥
2

F
, with (12)

ω̃k = exp(−
1 − α
2
∥xk −Uk−1U

⊺
k−1xk∥

2

F
) . (13)

In parallel, minimizing a weighted least-square objective func-
tion with a weight ω̃k results in the principal subspace of the
weighted covariance matrix Ck =Ck−1+ ω̃kxkx

⊺
k. As a result,

we can adopt the form (8) to set the weight ωt in (7). The
inclusion of p ≤ 2 . Accordingly, we reformulate the main
step (4) of the classical OPIT as follows

St = (1 − λ)St−1Et−1 + λωtxtw
⊺
t . (14)

Other steps of αOPIT can be given in Algorithm 2.
Complexity Analysis: αOPIT shares the same computational

complexity and memory storage as the classical OPIT method.
Specifically, its overall computational cost is O(nr2) flops.
The cost for each step of αOPIT is provided in details in
Algorithm 2. In terms of memory storage, αOPIT requires a
total of 2nr + r2 words of memory to save Ut,St, and Et at
each iteration.

IV. EXPERIMENTS

This section presents several experiments conducted to in-
vestigate the performance of αOPIT. Its effectiveness is evalu-
ated in comparison with several state-of-the-art ST algorithms,
including αFAPI, TRPAST, ROBUSTA, and OPIT.

A. Robust Sparse Subspace Tracking

The signal samples {xt}t≥1 are generated based on the data
model (1) where A = At is a slowly time-varying sparse
subspace matrix, generated recursively as follows

At =Ω⊛ (At−1 + εtVt), (15)

where Ω ∈ Rn×r is a binary matrix indicating the sparsity level
of the subspace matrix, and Vt ∈ Rn×r is Gaussian noise with
zero mean and unit variance. The parameter εt ≥ 0 controls the
level of subspace variation at each time step t. The vector wt ∈
Rr denotes the coefficient vector. The vector νt ∈ Rn accounts
for non-Gaussian noises. In our experiments, we consider the
following three cases for the noise νt:

νt(i) ∼ (1 − δ)N(0, σ2
n) + δLaplace(µ, γ), (16)

νt(i) ∼ (1 − δ)N(0, σ2
n) + δCauchy(µ, γ), (17)

and

νt(i) ∼ (1 − δ)N(0, σ2
n)

+ δ

2
Laplace(µ, γ) + δ

2
Cauchy(µ, γ), (18)
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Fig. 2: Experiment setup: data dimension n = 200, true rank
r = 5, number of data samples T = 2000, time-varying
factor εt = 10−2, subspace sparsity 80%, the alpha divergence
with α = 0.9.

where δ represents the proportion of corrupted data, and their
probability density functions are given by

N(x;µ,σ2
n) =

1√
2πσ2

n

exp( − (x − µ)
2

2σ2
n

), (19)

Laplace(x;µ, γ) = 1

2γ
exp( − ∣x − µ∣

γ
), (20)



and

Cauchy(x;µ, γ) = 1

πγ [1 + (x − µ
γ
)
2

]
. (21)

Furthermore, two abrupt changes are made at t = 1000 and
t = 1500 to evaluate the robustness of all ST algorithms.

To measure the accuracy of subspace tracking algorithms,
we use the subspace estimation performance (SEP) metric,
defined as follows.

SEP (Utrue,Uest) =
tr{U⊺est(I −UtrueU

⊺
true)Uest}

tr{U⊺est(UtrueU
⊺
true)Uest}

. (22)

The lower SEP indicates the better algorithm performance.
Fig. 2 illustrates the performance of all subspace tracking
algorithms across three case studies involving non-Gaussian
noise. As demonstrated, our method consistently outperforms
other state-of-the-art robust subspace tracking methods in all
settings. In particular, ROBUSTA and TRPAST are sensitive
to both Laplace and Cauchy noise. Although OPIT performs
well under Laplace noise, it exhibits performance degradation
during abrupt changes at t = 1000 and t = 1500 and struggles
with Cauchy noise. αFAPI can handle both types of corruption.
However, its estimation accuracy is lower than that of our
proposed method.

B. Direction-of-arrival (DOA) Tracking

We further evaluate the performance of the proposed αOPIT
algorithm in the context of direction-of-arrival (DOA) esti-
mation for wireless communication systems. Assume that the
received signal at each time t follows the data model

xt =Atst + νt. (23)

Here, At = [a(ω1,t),a(ω2,t), . . . ,a(ωK,t)] is the time-varying
steering matrix whose column is defined as

a(ωk,t) = [1, exp(jωk,t), . . . , exp(j(n − 1)ωk,t)]
⊺
, (24)

where ωk,t = π sin θk,t denotes the angular frequency associ-
ated with the DOA of the k-th user. The vector st represents
the user signal, modeled as a complex Gaussian random vector
with covariance matrix Cs = IK . The noise vector νt follows
the mixed distribution (17) described in the previous task of
robust subspace tracking.

The main objective is to estimate the DOAs from the
corrupted observations xt. To this end, αOPIT is applied to re-
cursively and robustly estimate the underlying signal subspace.
Once the subspace is obtained, the ESPRIT algorithm [29] is
applied to extract angular frequencies ωk(t), and thus recover
the DOAs θk(t).

The experimental results in Fig. 3 demonstrate that αOPIT
achieves high accuracy in DOA estimation under non-Gaussian
noise conditions. Compared to existing algorithms such as
ROBUSTA, TRPAST, and αFAPI, our method consistently
offers superior robustness for the DOA tracking task. Notably,
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Fig. 3: DOA tracking setup: n = 20 sensors, r = 3 signal
sources, and T = 1000 data samples. Alpha divergence with
α = 0.9 is used. The three underlying DOAs consist of a linear
source (#1), a sawtooth source (#2) and a sinusoidal source
(#3), illustrated by ( ).

in scenarios where the angular frequency θ changes fast (e.g.,
source #1 or source #2 at t = 400 and t = 800), αOPIT adapts
more quickly and tracks the variations more accurately than
the competing methods.

V. CONCLUSIONS

In this paper, we addressed the problem of robust subspace
tracking with data corruption. We proposed a novel robust and
adaptive algorithm, called αOPIT, for tracking the principal
sparse subspace of streaming data over time. Experimental
results demonstrated that αOPIT effectively handles various
types of data contamination and consistently outperforms ex-
isting subspace tracking algorithms. Future works will explore
its performance in high-dimensional settings and fast time-
varying cases. In addition, when handling higher-order stream-
ing data, subspace tracking naturally extends to tensor track-
ing [30]. Therefore, exploring robust tensor tracking through
α-divergence is a promising direction for future research.
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