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 A B S T R A C T

Singular spectrum analysis (SSA) is a nonparametric spectral estimation method that decomposes time series 
signals into interpretable components. With the rise of big time series, the demand for effective and scalable 
SSA techniques has become increasingly urgent. In this paper, we propose a novel multiway extension of 
SSA, called higher-order multivariate SSA (HO-MSSA), specifically designed for multivariate and multichannel 
time series signal analysis via tensor decomposition. HO-MSSA utilizes time-delay embedding and tensor 
singular value decomposition to transform multichannel time series signals into trajectory tensors, which 
are then decomposed into elementary components in the Fourier domain, rather than the time domain as 
in traditional SSA methods. These components are grouped into disjoint subsets using spectral clustering, 
enabling the reconstruction of the underlying source signals. Experimental results demonstrate that HO-MSSA 
outperforms state-of-the-art SSA methods in various biomedical applications, including electromyography 
(EMG), electrocardiography (ECG), and electroencephalogram (EEG) signals.
1. Introduction

Biomedical signal decomposition involves deconstructing complex 
signals, such as electromyography (EMG), electrocardiography (ECG), 
or electroencephalogram (EEG) signals, into simpler, more interpretable 
components [2]. Accordingly, it helps in identifying underlying pat-
terns and enhances our understanding of intricate biological processes. 
Singular spectrum analysis (SSA) emerges as a powerful technique 
for time-series analysis and biomedical signal decomposition [3–5]. In 
particular, SSA decomposes a signal into several interpretable compo-
nents, such as slowly time-varying trends, harmonic components, and 
noises. Notably, there are no assumptions about parametric models or 
stationarity-type conditions for the signals, making SSA a model-free 
method with broad applicability. We refer the readers to [3–5] for good 
references on the SSA literature.

In the era of big data, there has been an increasing interest in 
the analysis of multivariate and high-dimensional datasets [6]. Several 
multivariate SSA (MSSA) techniques have been introduced for ana-
lyzing multivariate time series, following the approach of Golyandina 
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Trung Le was funded by the Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF), Viet Nam, code VINIF.2024.STS.40.
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et al. in [3] for univariate time series and in [7] for multivariate 
time series. Noteworthy among these techniques are methods like 
vertical MSSA and horizontal MSSA in [8], 2D-SSA in [9], 2D-SSA 
in [10], MA-SSA in [11] and principal component trajectories (PCT) 
in [12] (refer to [13] for an extensive overview of MSSA). However, 
the aforementioned MSSA techniques typically rely on the singular 
value decomposition (SVD) on the trajectory matrix to extract elemen-
tary components. Consequently, they may not fully exploit features of 
multivariate time series and might overlook crucial aspects such as spa-
tial correlation, multilinear relationships, and higher-order statistical 
information.

In parallel, tensor decomposition (TD) has emerged as a powerful 
data processing tool with applications across various fields [14–17]. 
Tensors, which are multidimensional/multiway arrays, provide natu-
ral representations for multivariate and high-dimensional data [14]. 
Tensor decomposition allows for the factorization of tensors into basic 
components (e.g., vectors, matrices, or ‘‘simpler’’ tensors). Accordingly, 
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TD has been successfully applied to data and signal processing, partic-
ularly in multichannel biomedical signal analysis, including EMG [18,
19], ECG [20,21], and EEG signals [22,23]. Our study aims to develop 
a multilinear, multiway MSSA approach through the lens of TD. In 
the literature, the first tensor-based SSA method, referred to as TSSA, 
was introduced in [24]. This method utilizes the CP/PARAFAC de-
composition [25] of the trajectory tensor. Specifically, TSSA employs 
Hankelization and segmentation techniques to embed time series into 
a third-order trajectory tensor. For the grouping step, TSSA applies 
empirical mode decomposition to identify the underlying signal com-
ponents in the desired groups. Since then, several attempts have been 
made to develop tensor-based MSSA methods, including [26–33]. Most 
of these methods leverage one of two classical TDs: CP/PARAFAC [25] 
and Tucker/HOSVD/MLSVD [34]. However, each of these methods has 
limitations when applied to MSSA. For methods utilizing CP/PARAFAC 
(e.g., [24,26,27]), the elementary components are rank-1 elements of 
the CP/PARAFAC decomposition, which can be challenging to identify 
in practice. Specifically, estimating the number of elementary com-
ponents for MSSA (i.e., the CP rank) is an NP-hard problem [35]. 
Additionally, determining the best rank-𝑟 approximation of a tensor 
with order greater than 3 may be ill-posed [36]. Methods utilizing 
Tucker decomposition (e.g., [28,29]) face issues of non-uniqueness 
in the sense that the core tensor of Tucker decomposition can be 
modified without changing the representation, provided that inverse 
modifications are applied to its loading factors [14]. As a result, the ele-
mentary components derived from Tucker decomposition are generally 
not unique. Moreover, truncating the Tucker decomposition for a fixed 
rank is also not optimal [37]. The work [33] applied MLSVD, which is 
a special case of Tucker decomposition, to generalize MSSA. However, 
the MLSVD decomposition may not be unique if the 𝑛-mode singular 
values of the underlying tensor exhibit a high degree of multiplicity. 
Some tensor-based SSA methods, such as in [30–32], employ circular 
Hankelization for embedding of time-series signals. In particular, the 
columns of trajectory matrices are formed from full-length time series 
and their circular shifts. Accordingly, these trajectory matrices and 
tensors can become (very) huge, which limits their practical utility 
for embedding big time series. In addition, some of them are tailored 
to specific datasets or applications, such as EEG analysis [29], fault 
diagnosis [26,27,31], and hyperspectral image analysis [30], limiting 
their applicability. Therefore, the need for a generalized tensor-based 
MSSA approach is evident.

In this paper, we introduce a novel multiway extension of SSA 
designed to handle multichannel time series, which we refer to as 
higher-order multivariate SSA (HO-MSSA).1 Specifically, we employ 
a modified time-delay embedding (TDE) technique that can adapt to 
various window lengths and step sizes, enabling the transformation of 
any multichannel time series into trajectory tensors. The decomposition 
of these trajectory tensors into elementary components is performed 
by using tensor singular value decomposition (t-SVD) technique [40], 
a multiway extension of SVD for higher-order tensors. Subsequently, 
a spectral clustering method is employed to group these elementary 
components. To extract the underlying time-series signals, we introduce 
a new block diagonal averaging technique applied to frontal slices of 
the reconstructed tensor components.

Compared to existing tensor-based SSA methods, HO-MSSA offers 
several notable advantages. First, the embedding technique we use, 

1 In the literature, a variant of SSA was discussed in [38,39], also referred 
to as higher-order SSA. This variant integrates basic SSA with higher-order 
statistics of univariate time series. Our proposed method deviates from this 
approach by employing tensor analysis on multiple trajectory matrices derived 
from multivariate time series. In our context, the term ‘‘higher-order’’ in 
HO-MSSA refers to both the increased dimensionality and the order of the 
trajectory tensor formed by stacking all trajectory matrices.
2 
TDE in (8), can be seen as a generalized version of the Hankeliza-
tion and segmentation techniques commonly used in current tensor-
based SSA methods (e.g., [24,26–30,33]). Accordingly, it preserves 
their desirable properties in classical SSA and previous tensor-based 
SSA methods, while also facilitating low-rank approximations for many 
types of signals (see Section 3.1 for further details). Next, TDE provides 
a more compact representation than circular Hankelization method 
used in [30–32]. As mentioned above, the circular Hankelization can 
result in a large trajectory tensor, but by adjusting the window size 𝑊
and step size 𝛿, TDE generates a more moderate trajectory tensor that 
can be efficiently and effectively factorized using state-of-the-art tensor 
decomposition methods. Furthermore, TDE often produces a lower-rank 
representation of the signal compared to the circular Hankelization, see 
Fig.  6 for an example.

Second, in the context of SSA, t-SVD likely offers a superior de-
composition compared to the classical CP and Tucker decompositions. 
The effectiveness of SVD in traditional SSA is due to three key fac-
tors: (i) its Eckart–Young–Mirsky optimality, which ensures that this 
decomposition provides the best low-rank approximation of trajectory 
matrices; (ii) the singular values in SVD represent the spectrum of 
trajectory matrices, serving as a characteristic measure of the contri-
bution of underlying components; and (iii) the orthogonality of the 
loading factors (i.e., the left and right eigenvector matrices) helps in 
distinguishing the underlying components [3]. In multichannel and 
multivariate SSA, CP and Tucker decompositions no longer exhibit 
these properties, whereas t-SVD still retains them. Third, unlike other 
SSA methods, the proposed method leverages the appealing properties 
of tubes in the 𝑓 -diagonal tensor in the t-SVD of trajectory tensors. 
This enables the use of modern clustering techniques from machine 
learning to effectively perform the grouping step. Last but not least, the 
effectiveness of HO-MSSA is demonstrated over other tensor-based SSA 
methods through several applications in decomposing and analyzing 
multichannel biomedical signals, including EMG, ECG, and EEG. Last 
but not least, the effectiveness of HO-MSSA is demonstrated over other 
tensor-based SSA methods through several applications in decomposing 
and analyzing multichannel biomedical signals, including EMG, ECG, 
and EEG.

2. Preliminaries

2.1. Notations

In this paper, we use the following conventions. Lowercase letters 
represent scalars (e.g., 𝑥), while boldface capital letters indicate vec-
tors (e.g., 𝐱). Matrices and tensors are denoted using boldface capital 
letters (e.g., 𝐗) and bold calligraphic letters (e.g., ), respectively. The 
(𝑖1, 𝑖2,… , 𝑖𝑛)th element of  is denoted as  (𝑖1, 𝑖2,… , 𝑖𝑛). The transpose 
operation is represented as (⋅)⊤, and the Frobenius norm as ‖ ⋅ ‖𝐹 . The 
functions ‘‘f f t(⋅)’’ and ‘‘if f t(⋅)’’ denote fast Fourier transform and its 
inverse operator. We denote by ̂ = ff t( , [], 3) a third-order tensor 
obtained by taking the Fourier transform along the 3rd dimension of  . 
Symbols ‘‘∙’’, ‘‘⊞’’, and ‘‘∗’’ represent the t-product, tensor concatena-
tion and circular convolution, respectively. In particular, the t-product 
of two tensors  of size 𝐼1 × 𝐼2 × 𝐼3 and  of size 𝐼2 ×𝐿 × 𝐼3 results in 
a tensor  of size 𝐼1 × 𝐿 × 𝐼3

 =  ∙ ⇔ (𝑖, 𝑗, ∶) =
∑𝐿
𝑙=1 (𝑖, 𝑙, ∶) ∗ (𝑙, 𝑗, ∶). (1)

The tensor concatenation of two tensors  of size 𝐼1 × 𝐼2 × 𝐽 and  of 
size 𝐼1 × 𝐼2 ×𝐾 results in a tensor  of size 𝐼1 × 𝐼2 × (𝐽 +𝐾)

 = ⊞ ⇔ (∶, ∶, 𝑙) =

{

(∶, ∶, 𝑙)  if 𝑙 ≤ 𝐽
(2)
(∶, ∶, 𝑘 − 𝐽 )  if 𝑘 > 𝐽.
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2.2. Singular spectrum analysis

Singular spectrum analysis (SSA) is performed in four main steps, 
namely embedding, decomposition, grouping, and diagonal averag-
ing [3].

Step 1. (Embedding): Embedding, also known as Hankelization, 
transforms a time series vector 𝐱 ∈ R𝑁×1 into the following Hankel 
matrix (𝐽 = 𝑁 −𝑊 )

(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐱(1) 𝐱(2) … 𝐱(𝐽 + 1)
𝐱(2) 𝐱(3) … 𝐱(𝐽 + 2)
⋮ ⋮ … ⋮

𝐱(𝑊 ) 𝐱(𝑊 + 1) … 𝐱(𝑁)

⎤

⎥

⎥

⎥

⎥

⎦

, (3)

where 𝑊  is a chosen window length. Here, (𝐱) is a trajectory ma-
trix and its columns are called 𝑊 -lagged vectors of 𝐱. In SSA, the 
window length 𝑊  should be sufficiently large so that each 𝑊 -lagged 
vector incorporates an essential part of the behavior of the time-series 
signal 𝐱.2

Step 2. (Decomposition): At this step, we perform the singular value 
decomposition (SVD) of the trajectory matrix 

(𝐱) = 𝐔𝐒𝐕⊤ =
𝐾
∑

𝑘=1
𝜆𝑘𝐮𝑘𝐯⊤𝑘 , (4)

where 𝐾 = rank((𝐱)); 𝐔 = [𝐮1,𝐮2,… ,𝐮𝐾 ] and 𝐕 = [𝐯1, 𝐯2, … , 𝐯𝐾 ] are 
left and right singular orthogonal vector matrices; and 𝜆𝑘 = 𝐒(𝑘, 𝑘) is the 
𝑘th singular value of (𝐱). The collection (𝜆𝑘,𝐮𝑘, 𝐯𝑘) is 𝑘th eigentriple 
of the SVD of (𝐱). Rows and columns of (𝐱) are subseries of the 
original time series 𝐱. Therefore, the left and right singular vectors also 
have temporal structures and hence can also be regarded as time series.

Step 3. (Grouping): The purpose of this step is to separate additive 
components of time series, achieved by partitioning the set of indices 
{1, 2,… , 𝐾} into 𝑅 (with 𝑅 ≤ 𝐾) disjoint subsets 𝐼1, 𝐼2,… , 𝐼𝑅 and 
forming 

(𝐱) =
𝑅
∑

𝑟=1
𝐗𝑟,  where 𝐗𝑟 =

∑

𝑖∈𝐼𝑟

𝜆𝑖𝐮𝑖𝐯⊤𝑖 . (5)

One of the most widely-used technique for extracting components 
{𝐗𝑟}𝑅𝑟=1 is to use the matrix of W-correlations [3]. The eigentriples 
belonging to the same group can correspond to highly correlated com-
ponents of the time series.

Step 4. (Diagonal Averaging): If components of the series are dis-
tinctly separated and the indices divided accordingly, then all the 
matrices in (5) are Hankel matrices, facilitating the direct extraction 
of corresponding time series. However, in practice, such perfect sepa-
ration may not be satisfied and we transform an arbitrary matrix into 
a Hankel matrix and subsequently into a signal, as follows 

�̂�𝑟(𝑛) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
𝑛

𝑛
∑

𝑗=1
𝐗𝑟(𝑗, 𝑛 − 𝑗 + 1)  if 1 ≤ 𝑛 < 𝑊

1
𝑊

𝑊
∑

𝑗=1
𝐗𝑟(𝑗, 𝑛 − 𝑗 + 1)  if 𝑊 ≤ 𝑛 < 𝐽

1
𝑁 − 𝑛 + 1

𝑊
∑

𝑗=𝑛−𝐽+1
𝐗𝑟(𝑗, 𝑛 − 𝑗 + 1)  otherwise.

(6)

This step is called diagonal averaging or de-hankelization.

2 In MSSA, the trajectory matrix may take various forms, such as stacked 
Hankel, circular Hankel, Hankel-block-Hankel, or quasi-Hankel matrices, de-
pending on the employed techniques. For further details on these forms, we 
refer readers to [41] for a good reference.
3 
2.3. Tensors and tensor singular value decomposition

Tensor is a multidimensional array and it provides a natural rep-
resentation for multivariate and high-dimensional data [14]. Tensor 
singular value decomposition (t-SVD) is a multiway extension of SVD 
for factorizing higher-order tensors [40]. Under the t-SVD format, a 
tensor  ∈ R𝑛1×𝑛2×𝑛3  is decomposed into three tensors  ,, and 
as follows: 
 =  ∙  ∙ ⊤, (7)

where  ∈ R𝑛1×𝑛1×𝑛3  and  ∈ R𝑛2×𝑛2×𝑛3  are orthogonal tensors (i.e.,  ∙
 ⊤ =  ⊤ ∙ = );  ∈ R𝑛1×𝑛2×𝑛3  is an 𝑓 -diagonal tensor whose frontal 
slices are diagonal. Note that when 𝑛3 = 1, the t-product becomes the 
matrix product and (7) boils down to the classical SVD.

The t-SVD algebraic framework is quite different from the classical 
multilinear algebra in other types of tensor decomposition. Leveraging 
the t-product and Fourier transform, it extends various linear and 
multilinear operations from matrices to tensors, including transpose, 
orthogonality, and inverse [40].

3. Proposed method

In this section, we propose a novel multiway (tensor) extension of 
MSSA for handling multichannel and multivariate time-series signals, 
called HO-MSSA (Higher-Order MSSA). Similarly to standard SSA, HO-
MSSA contains four main steps: time delay embedding, tensor SVD, 
grouping, and reconstruction, as illustrated in Fig.  1.

3.1. Time delay embedding

In this step, for each channel/measurement 𝐱, we employ the fol-
lowing time delay embedding (TDE) 

TDE𝑊 ,𝛿(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐱(1) 𝐱(𝛿 + 1) … 𝐱(𝐼𝛿 + 1)
𝐱(2) 𝐱(𝛿 + 2) … 𝐱(𝐼𝛿 + 2)
⋮ ⋮ … ⋮

𝐱(𝑊 ) 𝐱(𝛿 +𝑊 ) … 𝐱(𝐼𝛿 +𝑊 )

⎤

⎥

⎥

⎥

⎥

⎦

, (8)

with a window length 𝑊 ≥ 2, a step size 𝛿 ≥ 1 and 𝐼 = ⌊(𝑁 −𝑊 )∕𝛿⌋. 
Here, (8) can be viewed as a generalized version of Hankelization (3) 
and segmentation [42] techniques for embedding time-series signals. 
When 𝛿 = 1, (8) corresponds to the Hankel matrix (𝐱) in (3), while 
it becomes the segmentation if 𝛿 = 𝑊 . We also refer to (8) as the 
trajectory or TDE matrix.

Interestingly, (8) can facilitate low-rank approximations to several 
types of time-series signals. A notable class consists of signals that 
can be expressed as polynomial and exponential components [43], see 
Proposition  1.

Proposition 1.  Consider a polynomial 𝑝𝑟(𝑡) =
∑𝑄𝑟
𝑞=0 𝑐𝑞𝑡

𝑞 of degree 𝑄𝑟
with 𝑐𝑝 ∈ R and a signal 𝐱 of form 

𝐱(𝑡) =
𝑅
∑

𝑟=1
𝑝𝑟(𝑡) sin(𝜔𝑟𝑡 + 𝜓𝑟)𝑧𝑡𝑟, (9)

with 𝑧𝑟, 𝜔𝑟, 𝜓𝑟 ∈ R. Then, rank(TDE𝑊 ,𝛿(𝐱)) ≤ min(𝑊 , 2𝑅 +
∑𝑅
𝑟=1𝑄𝑟) ∀𝑊 ,

𝛿.

Example 1.  If 𝐱(𝑡) = 𝑧𝑡, then rank(TDE𝑊 ,𝛿(𝐱)) = 1 ∀𝑊 , 𝛿.

Proof.  As indicated in [42], if 𝐱 takes the form (9), the rank of the 
corresponding classical Hankel matrix is given by rank(TDE𝑊 ,1(𝐱)) =
min(𝑊 , 2𝑅 +

∑𝑅
𝑟=1𝑄𝑟). Since TDE𝑊 ,𝛿(𝐱) in (8) is formed by selecting 

a subset columns from TDE𝑊 ,1(𝐱), we always have rank(TDE𝑊 ,𝛿(𝐱)) ≤
rank(TDE𝑊 ,1(𝐱)) ∀𝑊 , 𝛿. Therefore, its rank is upper bounded by
min(𝑊 , 2𝑅 +

∑𝑅 𝑄 ). □
𝑟=1 𝑟



T.T. Le et al. Signal Processing 238 (2026) 110113 
Fig. 1. Main steps of HO-MSSA for multichannel biomedical signal analysis. First, each observation is transformed into a matrix using the time delay embedding (TDE) technique. 
Next, we construct a trajectory tensor  by stacking the TDE matrices of 𝑀 observations along the third dimension. We then decompose  using t-SVD into elementary tubal-rank-1 
components. These components are grouped into disjoint clusters using spectral clustering, which are subsequently used to reconstruct the underlying source signals.
In addition, the TDE (8) is connected to the short time Fourier 
transform (STFT), which is a useful time–frequency representation tool. 
Specifically, their relation is given by 
𝐗STFT(𝐱) = 𝐅𝑁×𝑊 diag(𝝎)TDE𝑊 ,𝛿(𝐱), (10)

where 𝐅𝑁×𝑊  contains the first 𝑊  columns of the discrete Fourier trans-
form matrix and 𝝎 denotes the window function in STFT. Since 𝐅𝑁×𝑊
is a full column rank, rank(𝐗STFT(𝐱)) = rank(TDE𝑊 ,𝛿(𝐱)). In [44,45], 
the authors presented various signals with low-rank STFT matrices. 
Therefore, TDE also admits the low rank representation to such signals.

It is also worth noting that many signals obtained from our hu-
man body show periodic, quasiperiodic, or cyclostationary behavior, 
reflecting the cyclical patterns inherent in physiological processes [5]. 
Therefore, TDE can offer a valuable technique to obtain a low-rank 
representation to biomedical signals. Refer to Fig.  10 for an illustration 
of an ECG signal and its low-rank TDE matrix.

3.2. Tensor SVD decomposition

We construct the trajectory tensor  ∈ R𝑊 ×(𝐼+1)×𝑀  by stacking 
along the third way TDE matrices of 𝑀 observations {𝐱𝑚}𝑀𝑚=1 as follows 

 = TDE𝑊 ,𝛿(𝐱1)⊞ TDE𝑊 ,𝛿(𝐱2)⋯⊞ TDE𝑊 ,𝛿(𝐱𝑀 ). (11)

Taking the t-SVD decomposition of  results in:


t-SVD
=  ∙  ∙ ⊤

=
𝐾
∑

𝑘=1
 (∶, 𝑘, ∶) ∙ (𝑘, 𝑘, ∶) ∙ (𝑘, ∶, ∶)⊤ =

𝐾
∑

𝑘=1
𝑘, (12)

where 𝐾 ≤ min(𝑊 , 𝐼 + 1) is the tubal rank of  ;  ∈ R𝑊 ×𝐾×𝑀  and 
 ∈ R𝐾×(𝐼+1)×𝑀  are orthogonal tensors; and  ∈ R𝐾×𝐾×𝑀  is an 𝑓 -
diagonal tensor. Here, the tubal rank-1 tensors {𝑘}𝐾𝑘=1 are regarded as 
elementary components in this application, see Fig.  2 for an illustration. 
In (12), the value of 𝐾 is identified as the number of non-zero tubes 
of , i.e., 𝐾 =

∑

𝑘 𝟏[(𝑘, 𝑘, ∶) ≠ 𝟎] where 𝟏 is an indicator function. 
In this step, we can apply Algorithm 1 (other t-SVD algorithms can 
be founded in [40,46,47]) to perform the tensor decomposition (12) 
effectively.

The t-SVD decomposition (12) offers two properties that enable HO-
MSSA to effectively decompose multichannel time series signals into 
identifiable components. First, t-SVD provides the optimal low tubal-
rank representation for trajectory tensors. Among all tensors  of tubal 
rank 𝑑 ≤ 𝐾, the tensor  =

∑𝑑
𝑘=1 𝑘 offers the best approximation to 

 by minimizing ‖ − ‖

2  [40]. This allows for effective separation 
𝐹

4 
Fig. 2. Elementary tensor of tubal rank 1.

Algorithm 1: t-SVD
Input: 
Output:  , , 

1 Main Procedure:
2 ̂ = ff t( , [], 3)
3 for 𝑖 = 1,… , ⌈𝑀+1

2
⌉ do

4
[

𝐔𝑖,𝐒𝑖,𝐕𝑖
]

= SVD
(

̂ (∶, ∶, 𝑖), 𝐾
)

5 ̂ (∶, ∶, 𝑖) = 𝐔𝑖, ̂(∶, ∶, 𝑖) = 𝐒𝑖, ̂(∶, ∶, 𝑖) = 𝐕𝑖

6 end 
7 for 𝑗 = ⌈

𝑀+1
2

⌉ + 1,… ,𝑀 do
8 ̂ (∶, ∶, 𝑗) = conj(𝐔𝑀−𝑗+2)
9 ̂(∶, ∶, 𝑗) = 𝐒𝑀−𝑗+2

10 ̂(∶, ∶, 𝑗) = conj(𝐕𝑀−𝑗+2)
11 end 
12  = iff t(̂ , [], 3),  = iff t(̂ , [], 3),  = iff t(̂ , [], 3)
13 End

of main components from additive noises. Second, the orthogonality 
property aids in distinguishing components that are (approximately) 
orthogonal. Many time series components (e.g., trends and harmonic 
components with different frequencies) tend to become asymptotically 
orthogonal as the length of the time series increases.

We note that t-SVD factorizes the trajectory tensor  in the Fourier 
domain rather than the time domain, as in basic SSA and other 
SSA variants. Indeed, the connection between TDE and STFT in (10) 
reveals that the Fourier transform T̂DE𝑊 ,𝛿(𝐱) of the trajectory ma-
trix TDE𝑊 ,𝛿(𝐱) can be expressed as T̂DE𝑊 ,𝛿(𝐱) = �̂�𝐒𝐕⊤ where �̂� =
𝐅𝑁×𝑊 diag(𝝎)𝐔, and 𝐔,𝐒, and 𝐕 are three matrix factors of the SVD of 
TDE𝑊 ,𝛿(𝐱). It suggests that the decomposition of trajectory matrices can 
be performed in the Fourier domain, as described in Algorithm 1. Also 
when 𝑀 = 1 (univariate time series), t-SVD simplifies to the classical 
SVD, thus making HO-MSSA equivalent to SSA.
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Fig. 3. Performing t-SVD on the trajectory tensor built from 10 sinusoidal signals of 
the same frequency (by differing just by phase and amplitudes). The tubal rank is 2.

Fig. 4. Block diagonal averaging or De-TDE.

3.3. Grouping

The aim of this step is to divide the set of elementary tensors 
{𝑘}𝐾𝑘=1 (i.e., { (∶, 𝑘, ∶),(𝑘, 𝑘, ∶),(𝑘, ∶, ∶)}𝐾𝑘=1) into 𝑅 disjoint clusters 
{𝐼𝑟}𝑅𝑟=1 and then form: 

 =
𝑅
∑

𝑟=1
𝑟  where 𝑟 =

∑

𝑖∈𝐼𝑟

 𝑖. (13)

Let 𝐬𝑘 = vec((𝑘, 𝑘, ∶)) ∈ R𝑀×1 ∀𝑘. We exploit the following observa-
tions: (i) the set of first elements {𝐬𝑘(1)}𝐾𝑘=1 sorts in decreasing order, 
i.e., 𝐬1(1) ≥ 𝐬2(1) ≥ ⋯ ≥ 𝐬𝐾 (1), which plays a similar role as singular 
values of the trajectory matrix in basic SSA; (ii) the remaining elements 
in 𝐬𝑘(2 ∶ end) are symmetric in the sense that 𝐬𝑘(𝑚) = 𝐬𝑘(𝑀 − 𝑚 + 2), 
∀𝑚 > 1, 𝑘 = 1, 2,… , 𝐾; (iii) the value of 𝐬𝑘(𝑚) with 𝑚 ≠ 1 can be 
negative, unlike the singular values of trajectory matrices; (iv) 𝐬𝑘 and 
𝐬𝑙 tend to be ‘‘close’’ if they belong to the same component (see Fig.  3 
for an example).

In the case of univariate time series analysis, t-SVD simplifies 
to SVD, with {𝐬𝑘}𝐾𝑘=1 representing the singular values of the tra-
jectory matrix. The relevance and physical significance of the ex-
tracted components are theoretically related to the concept of sepa-
rability [41]. Specifically, two components are regarded as strongly 
5 
separable when they are (approximately) orthogonal and the singular 
values of their trajectory matrices are disjoint. The orthogonality is 
inherently achieved through the property of t-SVD, while the disjoint-
ness of the tensor tubes is further enhanced. Considering properties 
(i)-(iv) mentioned above, the likelihood of 𝐬𝑘 coinciding with others 
from different components is low, thus facilitating the separability. 
Accordingly, the set of {𝐬𝑘}𝐾𝑘=1 derived from t-SVD of the trajectory 
tensor can effectively serve as features to perform the grouping (13). 
Therefore, in this step, we apply the spectral clustering method [48] to 
categorize 𝐾 vectors {𝐬𝑘}𝐾𝑘=1 into 𝑅 clusters. Specifically, this method 
utilizes the spectrum of the similarity or (normalized) Laplacian matrix 
of {𝐬𝑘}𝐾𝑘=1 to reduce dimensionality before clustering in lower dimen-
sions via spectral embedding. In situations where the number of clusters 
𝑅 is unknown, this method can determine it by evaluating the eigengap 
of the (normalized) Laplacian matrix. The computational complexity of 
this step is (𝐾2 max(𝐾,𝑀)). Noting that, other clustering methods in 
machine learning can also perform this step.

3.4. Reconstruction

After extracting 𝑟 for 𝑟 = 1, 2,… , 𝑅, we reconstruct the correspond-
ing time-series signals in a manner such that their TDE matrices closely 
approximate the frontal slices of 𝑟. Below, we present an extended 
version of (6), called block diagonal averaging or de-TDE, to recover 
the underlying signal 𝐱 from its TDE matrix, accommodating various 
window lengths 𝑊  and step sizes in the range 1 ≤ 𝛿 ≤ 𝑊 . Refer to Fig. 
4 for an illustration.

Let  = ⌊𝑊 ∕𝛿⌋, 𝒋𝛿 = [𝛿(𝑗 − 1) + 1 ∶ 𝛿𝑗] and 𝐱𝒋𝛿 = 𝐱(𝒋𝛿) ∈ R𝛿×1. We 
divide the TDE matrix of 𝐱 in (8) into two parts 

TDE𝑊 ,𝛿(𝐱) =
[

𝐗𝛿
𝐁

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐱𝟏𝛿 𝐱𝟐𝛿 … 𝐱𝑱 𝛿
𝐱𝟐𝛿 𝐱𝟑𝛿 … 𝐱(𝑱+𝟏)𝛿
⋮ ⋮ … ⋮
𝐱𝛿 𝐱(+𝟏)𝛿 … 𝐱(+𝑱−𝟏)𝛿
𝐛1 𝐛2 … 𝐛𝐽

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (14)

where 𝐁 has a small number of rows (i.e., 𝑊 − 𝛿 < 𝛿 rows). It is a 
null matrix if 𝑊 = 𝛿. Accordingly, in this step, we employ 𝐗𝛿 and 
𝐛𝐽  to reconstruct the time-series 𝐱 because the contribution of 𝐁 to 
this recovery is negligible. In particular, exploiting the block Hankel 
structure of 𝐗𝛿 in (14), we apply the following block diagonal averaging 
for the recovery of 𝐱
�̂� =

[

�̂�⊤𝟏𝛿 �̂�⊤𝟐𝛿 … �̂�⊤(+𝑱−𝟏)𝛿 𝐛⊤𝐽
]⊤, (15)

where 

�̂�𝒏𝛿 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
𝑛

𝑛
∑

𝑗=1
𝐗𝛿(𝒋𝛿 , 𝑛 − 𝑗 + 1)  if 1 ≤ 𝑛 < ,

1



∑

𝑗=1
𝐗𝛿(𝒋𝛿 , 𝑛 − 𝑗 + 1)  if  ≤ 𝑛 < 𝐽,

1
 + 𝐽 − 𝑛


∑

𝑗=𝑛−𝐽+1
𝐗𝛿(𝒋𝛿 , 𝑛 − 𝑗 + 1) otherwise.

(16)

Here, 𝐗𝛿 represents any frontal slice of the tensor 𝑟.

4. Numerical results

In this section, we present several experiments using both syn-
thetic and real data to demonstrate the effectiveness of HO-MSSA over 
the classical SSA, vertical MSSA [8], MA-SSA [11], PARAFAC-based 
MSSA [27] and MLSVD-based MSSA [33] in analyzing multichannel 
biomedical signals.

4.1. Experiments with synthetic data

We begin by evaluating the performance of HO-MSSA in the context 
of multichannel electromyography (EMG) denoising, using  synthetic 
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Fig. 5. Synthetic EMG signals corrupted by a sinusoidal signal, a sawtooth signal, and 
Gaussian noises.

data. Suppose that the 𝑚th observation 𝐱𝑚 is generated under the 
following model 
𝐱𝑚 = 𝐲𝑚 + 𝛼𝑚𝐜1 + 𝛽𝑚𝐜2 + 𝜎𝑚𝐧𝑚, (17)

where 𝐜1, 𝐜2, 𝐲𝑚, and 𝐧𝑚 represent a sinusoidal signal, a sawtooth signal, 
an EMG signal, and a Gaussian noise (zero mean and unit variance), 
respectively. Our objective is to detect the non-EMG components 𝐜1 and 
𝐜2, allowing us to recover the underlying EMG signals {𝐲𝑚}𝑀𝑚=1.

Following previous works in [49,50], we simulate pure EMG signals 
as follows 

𝐲𝑚[𝑡] =
𝑅
∑

𝑟=1
𝐲𝑚𝑟[𝑡] =

𝑅
∑

𝑟=1

𝐿−1
∑

𝓁=0
𝐀𝑚𝑟[𝓁]𝐬𝑟[𝑡 − 𝓁]. (18)

Here, 𝐀𝑚𝑟 represents the 𝑟th motor unit (MU) at the 𝑚th sensor, with a 
duration set to 𝐿 = 35 in this experiment. The source signal 𝐬𝑟[𝑡] =
∑

𝑗 𝛿[𝑡 − 𝜓𝑟𝑗 ] denotes the spike train of the 𝑟th MU, where spikes 
occur at times 𝜓𝑟𝑗 and 𝛿[⋅] is the delta function.3 For further details 
on the mathematical modeling of EMG signals, we refer the readers 
to [49] for a good reference. In our setting, two pure EMG signals 
are comprised of two sources with an excitation level set at 5% of 
the maximum voluntary contraction and the sampling frequency of 
𝑓 = 2048 Hz. Each measurement contains a sequence of 4096 data 
samples, corresponding to a duration of 2 s. The number of spikes from 
each source is 20. In Matlab, we simulate two non-EMG components 𝐜1
and 𝐜2 as sin(2 × 𝜋 × 4∕𝑁 × [1 ∶ 𝑁]) and sawtooth(2 × 𝜋 × 7∕𝑁 × [1 ∶ 𝑁]) 
where 𝑁 = 4096. The coefficients [𝛼1, 𝛼2], [𝛽1, 𝛽2], and [𝜎1, 𝜎2] are fixed 
at [1, 1], [1,−0.5], [1, 1], respectively. See Fig.  5 for an illustration of two 
observations 𝐱1 and 𝐱2.

We first illustrate the effect of the TDE in (8), comparing it to 
classical Hankelization in (3) and circular Hankelization as presented 
in [31]. We consider two case studies for the window 𝑊 , corresponding 
to 𝑊 = 5𝐿 (short) and 𝑊 = 𝑁∕2 (long). The step size 𝛿 is set to 
𝐿, 2𝐿, and 5𝐿. Fig.  6(a) and (b) depict the spectrum of trajectory 
matrices for the EMG and sawtooth components of 𝐱1 with these 
embedding techniques. Note that classical Hankelization corresponds 
to our TDE𝑊 ,𝛿 with 𝛿 = 1. We can see that the decay rate of the 
spectrum of trajectory matrices is significantly faster than that of the 
classical and circular Hankel transforms. It suggests that our TDE𝑊 ,𝛿
can enhance the low rank approximation to signals more effectively 
than classical and circular Hankelization techniques. Particularly when 
𝛿 = 𝐿, the signals reconstructed using the de-TDE (15) closely match 
the original observations. However, with a larger step size (i.e., 𝛿 =
5𝐿), the reconstructed signals deviate significantly from the original 
observations, as shown in Fig.  6(c) and (d).

3 The motor unit (MU) is the smallest functional unit of the neuromuscular 
command which structures it at the muscle level. This command controls MU 
by modulating its firing frequency (spike train).
6 
In the following experiment, we investigate the effect of the em-
bedding dimension 𝐼 on the separability of components. Here, we fix 
the window size 𝑊  to 𝑁∕2 and vary the step size 𝛿 from 1 to 5𝐿
(where 𝐿 = 35 is the length of the motor unit filter). As the embedding 
dimension 𝐼 = ⌊(𝑁−𝑊 )∕𝛿⌋, its value ranges from 11 to 2048. We follow 
the previous works [51,52] to evaluate the mean squared separation 
error, which is based on the reconstructed error (RE) of the estimated 
components: 

RE = 1
𝑁

𝑁
∑

𝑡=1

(

𝐜(𝑡) − �̂�(𝑡)
)2, (19)

where 𝐜 and �̂� denote the true and estimated components, respec-
tively. Fig.  7 illustrates the reconstructed error for four underlying 
components, including two non-EMG components 𝐜1, 𝐜2, and two EMG 
components 𝐲1, 𝐲2, as function of the embedding dimension 𝐼 . As the 
embedding dimension 𝐼 increases (i.e., as the step size 𝛿 decreases), 
the reconstruction error and hence separability of all four compo-
nents improves. Note that selecting the optimal parameters, such as 
the embedding dimension, window length, and step size, depends on 
the specific data types and applications. Consequently, their effect on 
component separability may vary across different tasks and datasets.

Next, we use a time window 𝑊 = 5𝐿 and a step size 𝛿 = 𝐿
to construct the trajectory tensor  of size 175 × 110 × 2, and pro-
ceed to factorize  via the t-SVD decomposition using Algorithm 1. 
This decomposition results in two orthogonal tensors  ∈ R175×110×2, 
 ∈ R110×110×2, and an 𝑓 -diagonal tensor  ∈ R110×110×2. We obtain 
a set of 110 elementary tensors {𝑘}110𝑘=1, where 𝑘 =  (∶, 𝑘, ∶) ∙
(𝑘, 𝑘, ∶) ∙ (𝑘, ∶, ∶) ∈ R175×110×2. We then apply spectral clustering 
to group these components into four main classes: EMG signal, si-
nusoid signal, sawtooth signal, and noise. This clustering method is 
implemented by using normalized graph Laplacian with a Gaussian sim-
ilarity function defined as 𝐋(𝐬𝑖, 𝐬𝑗 ) = exp(−‖𝐬𝑖 − 𝐬𝑗‖22∕2). In Matlab, we 
use the command ‘‘𝚜𝚙𝚎𝚌𝚝𝚛𝚊𝚕𝚌𝚕𝚞𝚜𝚝𝚎𝚛(𝐋,4, ‘𝙳𝚒𝚜𝚝𝚊𝚗𝚌𝚎’, ‘𝚙𝚛𝚎𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚍’, 
‘𝙻𝚊𝚙𝚕𝚊𝚌𝚒𝚊𝚗𝙽𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗’, ‘𝚜𝚢𝚖𝚖𝚎𝚝𝚛𝚒𝚌’)’’, where ‘‘𝐋 = 𝚎𝚡𝚙(−𝚍𝚒𝚜𝚝.{2)’’ 
and ‘‘𝚍𝚒𝚜𝚝 = 𝚜𝚚𝚞𝚊𝚛𝚎𝚏𝚘𝚛𝚖(𝚙𝚍𝚒𝚜𝚝(𝐒))’’. Subsequently, time-series signals 
are extracted from each measurement through block diagonal aver-
aging applied to the frontal slices of the corresponding reconstructed 
tensor. Fig.  8 illustrates the recovered signals, which closely match 
the original ones. These results highlight the potential of HO-MSSA for 
effectively decomposing multichannel time-series signals.

4.2. Experiments with real data

We next consider two real-life applications to further demonstrate 
the effectiveness of HO-MSSA compared to other (M)SSA methods: fetal 
heartbeat extraction from maternal abdominal ECG recordings and EOG 
artifact removal from EEG signals.

4.2.1. Fetal heartbeat extraction from maternal abdominal ECG recordings
Fetal heartbeat extraction from maternal abdominal electrocardio-

gram (ECG) recordings is a challenging blind source separation problem 
due to (i) the low amplitude of fetal ECG signals, (ii) the potential for 
noise from various sources, and (iii) other factors [53]. We explore the 
application of HO-MSSA to this task using an open ECG dataset.4 This 
dataset contains five abdominal and three thoracic recordings acquired 
from various regions of the mother’s body, with a sampling frequency 
of 250 Hz. We focus on five abdominal recordings, each consisting of 
800 data samples only. Refer to Fig.  9 for an illustration.

In our experiment, we set the window length 𝑊  to 400 (i.e., half of 
the signal length), with a step size 𝛿 = 1, resulting in a trajectory tensor 
 of size 400 × 401 × 5. Fig.  10 shows the TDE matrix (a frontal slice of 
) and its corresponding singular values for an ECG recording. We can 
see that the spectrum exhibits fast decay, with focusing on the first few 

4 https://ftp.esat.kuleuven.be/pub/SISTA/data/biomedical.

https://ftp.esat.kuleuven.be/pub/SISTA/data/biomedical
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Fig. 6. Transformations of time delay embedding for the signal 𝐱1 using different window lengths 𝑊  and step sizes 𝛿.
Fig. 7. Effect of the embedding dimension on the separability of components.

Fig. 8. Extracted components: ( ) ground truth; ( ) recovered component.
7 
singular values. This property of the TDE matrix facilitates a low-rank 
approximation of the ECG signal and hence the trajectory tensor  .

As the groundtruth is unavailable, we evaluate the results by com-
paring them with those obtained using TenSOFO, a successful tensor-
based method for ECG source separation in [50,54]. Additionally, we 
can assess the experimental results by confirming the fact that the fetal 
heart rate is consistently higher than that of the mother.

All the SSA methods compared in this study rely on the window 
length, which is also set to 𝑊 = 400. For the PARAFAC-based MSSA 
method, the authors recommend setting the CP rank to the number 
of source signals, which is 2 for this experiment. For the MLSVD-
based MSSA method, the rank is determined by maximizing the spectral 
gap of the mode-1 unfolding matrix of the trajectory tensor, with an 
estimated value of 17. The algorithmic parameters of TenSOFO are kept 
as default. We apply the same HO-MSSA framework as described in 
Section 4.1 for this task. The only difference is that we estimate the 
tubal rank of  instead of using the full tubal rank t-SVD represen-
tation. Specifically, the tubal rank of  is determined to be 𝐾 = 92, 
representing to 92 elementary components. We use the ‘‘tubalrank.m’’ 
function from the tensor–tensor product toolbox to estimate the value 
of 𝐾.5 The experimental results are shown in Fig.  11. It is evident 
that SSA, vertical MSSA, and PARAFAC-based MSSA methods are not 
effective for this task, as they struggle to provide accurate results. 
Specifically, both classical SSA and vertical MSSA methods produce 
two components that seem to correspond to the mother’s cardiac cy-
cle, but their waveforms do not accurately reflect the heartbeat. The 

5 https://github.com/canyilu/tensor-tensor-product-toolbox.

https://github.com/canyilu/tensor-tensor-product-toolbox
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Fig. 9. Five abdominal ECG recordings.
Fig. 10. Time delay embedding (TDE) promotes low-rank approximation to ECG 
signals.

results from the PARAFAC-based MSSA make it difficult to realize any 
heartbeats. The MLSVD-based MSSA is limited to estimating only the 
mother’s heartbeats. By contrast, HO-MSSA produces two distinct beats 
that likely correspond to the fetal and maternal heartbeats. Addition-
ally, these results closely match those obtained using TenSOFO [50]. 
It suggests that HO-MSSA is capable of extracting fetal heartbeats from 
ECG recordings of the mother.

4.2.2. EOG artifact removal from EEG signals
A common issue in electroencephalographic (EEG) applications is 

that artifacts can significantly distort EEG signals, such as ocular arti-
facts from eye movements and blinks [55]. Therefore, it is crucial to 
remove such artifacts before further analysis. We demonstrate the sec-
ond application of HO-MSSA for removing electrooculographic (EOG) 
artifacts from EEG signals, with an open EEG dataset.6 Particularly, 
EEG signals were recorded from 27 participants, using the 10–20 
system with 19 channels. The signals were resampled with a sampling 
frequency of 200 Hz, and filtered by a bandpass filter between 0.5 and 
40 Hz, along with a notch filter at 50 Hz. In this task, we focus on six 
EEG recording channels (i.e., Fp1, Fp2, F3, F4, F7, F8) and analyze data 
from the first 15 s, which corresponds to 3000 data samples. Refer to 
Fig.  12 for an illustration of the EEG recordings from Participant #1.

To detect and remove EOG artifacts, we apply the same HO-MSSA 
framework of as in previous tasks. For each participant, we construct 
a trajectory tensor  of size 1500 × 1501 × 6, perform the t-SVD 
decomposition of  to extract elementary components, and then apply 
spectral clustering to group them into two main classes: EEG and 

6 https://data.mendeley.com/datasets/wb6yvr725d/3.
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Table 1
Estimated tubal ranks of EEG tensors. 
 Patient Rank Patient Rank Patient Rank 
 #1 540 #10 541 #19 528  
 #2 551 #11 538 #20 529  
 #3 529 #12 529 #21 546  
 #4 527 #13 544 #22 547  
 #5 548 #14 540 #23 541  
 #6 536 #15 523 #24 526  
 #7 523 #16 524 #25 532  
 #8 527 #17 529 #26 525  
 #9 527 #18 531 #27 534  

artifacts (EOG and noises). The number of elementary components 
is also determined by the tubal rank 𝐾 of  and its value changes 
depending on the participants. Table  1 reports the estimated tubal 
rank 𝐾 of the EEG tensors for 27 patients. Given that the EEG signals 
contain various artifacts and noises, the estimated tubal rank 𝐾 tends to 
be moderate. Specifically, the averaged value of 𝐾 over 27 patients is 
532.95±8.23 (mean ± standard derivation). Despite the moderate tubal 
rank, the variance ratio VR(𝑘) defined as7

VR(𝑘) =
∑𝑘
𝑖=1 ‖𝐬𝑖‖

2
2

∑𝐼
𝑗=1 ‖𝐬𝑗‖

2
2

(20)

reaches nearly 100% when 𝑘 exceeds 30% of the tensor dimension 
𝐼 = 1500, as shown in Fig.  13. This suggests that the majority of the sig-
nal’s variance is captured by a relatively small number of components 
compared to the data dimension, indicating that 30% strongest tensor 
components are dominant.

To evaluate the algorithm’s performance, we use the Mean Absolute 
Error (MAE) metric in the frequency domain, as presented in previous 
work [56]: 
MAE(𝐵𝑓 ) =

∑

𝑓∈𝐵𝑓

|

|

|

𝑃 con(𝑓 ) − 𝑃rec(𝑓 )||
|

/

|

|

|

𝐵𝑓
|

|

|

, (21)

where 𝑃 con(𝑓 ) and 𝑃rec(𝑓 ) are the power spectrum density of the 
contaminated (noisy) signal 𝐱 and the recovered (denoised) signal 𝐲, 
and 𝐵𝑓  indicates the frequency band of interest. We aim for the MAE 
metric to be as small as possible. As our EEG signals are filtered by a 
bandpass filter of 0.5−40 Hz, the MAE metric is specifically determined 
in five frequency bands, including delta (0.5−4 Hz), theta (4−8 Hz), 
alpha (8−12 Hz), beta (12−30 Hz) and low-gamma (30−40 Hz). As 
suggested in [56,57], together with the MAE metric, we also use the 
following metric to assess the correlation between 𝐱 and 𝐲 in the 
frequency domain 

𝜌(𝑓 ) =

1
2
|

|

|

∑𝑓+𝛿𝑓
𝑓−𝛿𝑓

�̂�∗(𝑘)�̂�(𝑘) + �̂�(𝑘)�̂�∗(𝑘)||
|

√

|

|

|

∑𝑓+𝛿𝑓
𝑓−𝛿𝑓

�̂�(𝑘)�̂�∗(𝑘).
∑𝑓+𝛿𝑓
𝑓−𝛿𝑓

�̂�(𝑘)�̂�∗(𝑘)||
|

, (22)

7 Note that for any tensor  with tubal rank 𝐾, it holds that ‖‖

2
𝐹 = ‖‖2𝐹 =

∑𝐾
‖𝐬 ‖

2 where 𝐬 = (𝑘, 𝑘, ∶).
𝑘=1 𝑘 2 𝑘

https://data.mendeley.com/datasets/wb6yvr725d/3
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Fig. 11. ECG separation results: fetal heartbeats (above) and maternal heartbeats (below).

Fig. 12. EEG signals mixed with EOG artifacts: 06 recording channels.

Fig. 13. The norm of {𝐬𝑘}1500𝑘=1  of the 𝑓 -diagonal tensor  from the t-SVD of EEG trajectory tensors, along with the corresponding variance ratio VR(𝑘). The red dashed lines 
represent the average values, while the green shaded area indicates their domain.
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Fig. 14. Results of EOG artifact removal from EEG signals using HO-MSSA: ( ) contaminated EEG signals; ( ) denoised EEG signals; ( ) estimated EOG artifacts. 
Sub-figures on the left and right are for Participant #1 and #2, respectively. Note that our EEG signals are filtered using a bandpass filter with a frequency range of 0.5 to 40 Hz.
Table 2
EOG artifact removal from EEG signals: Performance of (M)SSA algorithms in terms of the MAE metric.

Method
Band delta

(0.5−4 Hz)
theta

(4−8 Hz)
alpha

(8−12 Hz)
beta

(12−30 Hz)
low-gamma
(30−40 Hz)

SSA 80.37 ± 25.86 12.73 ± 4.342 5.802 ± 0.949 2.269 ± 1.908 0.624 ± 0.121
MA-SSA 97.49 ± 34.41 8.522 ± 3.215 4.891 ± 1.556 1.074 ± 0.593 0.357 ± 0.098
Vertical MSSA 126.9 ± 40.92 3.287 ± 1.026 3.714 ± 1.207 1.231 ± 0.954 0.093 ± 0.072
PARAFAC-based 89.27 ± 20.45 7.233 ± 3.956 4.722 ± 1.045 1.334 ± 0.809 0.528 ± 0.138
Tucker-based 152.5 ± 50.97 2.463 ± 0.841 1.503 ± 0.942 0.959 ± 0.072 0.088 ± 0.076
HO-MSSA 102.1 ± 37.78 1.301 ± 0.374 0.705 ± 0.462 0.133 ± 0.085 0.051 ± 0.029

(mean ± standard deviation).
Here, (⋅)∗ denotes the complex conjugate operator, 2𝛿𝑓  defines the 
frequency window, �̂� and �̂� represent the Fourier coefficients of 𝐱 and 𝐲, 
respectively. The value of 𝜌(𝑓 ) ranges from 0 to 1, where 0 indicates no 
correlation and 1 indicates perfect correlation. In this task, we set the 
value of 2𝛿𝑓  to 3 Hz which covers approximately 87 Fourier transform 
coefficients. This 3 Hz across window is then moved across the entire 
spectrum of 40 Hz.

Performance of the SSA methods are shown graphically in Fig.  14 
and statistically in Table  2. For Participants #1 and #2, HO-MSSA 
effectively separates artifacts from their EEG recordings, as illustrated 
by red lines in Fig.  14(a) and (b). The power spectral density of the 
reconstructed/denoised EEG signals (blue lines) closely matches to the 
10 
reference signals, particularly in the theta, alpha, beta and low-gamma 
bands, as shown in Fig.  14(c) and (d). This is further validated by the 
evaluation metric 𝜌(𝑓 ), where the correlation value is close to 1 for 
frequencies above 4 Hz, as seen in Fig.  14(e) and (f).

The average results for HO-MSSA, and other SSA methods (using 
the same experimental setups as in previous tasks) across 27 partic-
ipants with respect to the MAE metric are reported in Table  2. We 
can observe that, in the theta, alpha, beta, and low-gamma bands, 
our method achieves the lowest MAE values, outperforming other 
(M)SSA methods. Performance of all (M)SSA methods in the delta 
band (0.5–4 Hz) is poor. However, this band is not considered in our 
analysis and the results do not completely reflect the performance of the 
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algorithms. It is due to that delta waves are typically associated with 
sleep stages [58], while the EEG signals in this study were recorded 
from awake participants.

5. Conclusions

In this paper, we proposed a novel extension of singular spec-
trum analysis called higher-order multivariate SSA (HO-MSSA) for 
multichannel time-series analysis. Our method employs a variant of 
time-delay embedding to transform signals into trajectory tensors, en-
abling effective decomposition using tensor SVD. Through spectral 
clustering and block diagonal averaging technique, we extracted in-
terpretable time-series signals. The demonstrated success in separating 
fetal ECG signals from maternal ECG signals and EOG artifact removal 
from EEG signals highlights the potential of our method for multivariate 
and high-dimensional biomedical data analysis.
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