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ABSTRACT

In this paper, we proposed an efficient regularized (L, L, 1)-
decomposition method, called Re-LL1, to factorize a time-
series tensor into block low-rank terms and sparse com-
ponents. Re-LL1 integrates three types of regularization
techniques, including nuclear norm for compactness and low
rank, generalized £,-norm for sparsity, and Tikhonov reg-
ularization for temporal smoothness. To solve the model
efficiently, we develop an elegant block-wise augmented La-
grangian method with Anderson acceleration. Experiments
on real-world surveillance video datasets demonstrate that
Re-LL1 achieves robust background—foreground separation
and converges faster than state-of-the-art methods.

Index Terms— Tensor decomposition, LL1 decomposi-
tion, data imperfection, data corruption, regularization, video
background and foreground separation.

1. INTRODUCTION

Tensor decomposition (TD) techniques have been increas-
ingly applied across a wide range of signal processing and
data science domains, demonstrating their effectiveness in
extracting meaningful structure from multidimensional sig-
nals and datasets [1-4]. Notable applications of TD include
biomedical signal processing, hyperspectral imaging, video
background-foreground separation, and anomaly detection,
where the goal is to robustly separate structured data from
sparse corruptions and anomalies [5].

Among TD models, the block term decomposition (BTD)
framework, particularly LL.1 model, stands out due to its abil-
ity to factorize tensors into a sum of block low-rank compo-
nents [6]. Under the LL1 format, each block is expressed as
the outer product of a low-rank matrix and a coefficient vector.
This model can be viewed as an extension of the most widely
used CP/PARAFAC tensor decomposition. In this study, we
aim to develop effective methods for LL1 decomposition in
the presence of data imperfection, with a specific focus on the
application of video background and foreground separation.

Data imperfection remains a critical challenge in tensor
decomposition, often leading to degraded performance, espe-
cially in real-world applications [3]. For instance, in video
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processing and analysis, sparse outliers typically correspond
to moving objects or sudden environmental changes that tra-
ditional TD methods struggle to handle effectively. To en-
sure reliable performance, robust approaches that explicitly
account for such corruptions are essential.

Most existing methods for L1 and block term decom-
position (BTD) rely on frameworks, including alternating
least squares (ALS) [7], block coordinate descent (BCD) [8],
nonlinear least squares (NLS) [8], Bayesian approach [9],
and their variants [10-13]. However, in the presence of data
imperfection, these techniques often suffer from slow conver-
gence and low estimation accuracy (See Fig. 2 for an exam-
ple). To address these limitations, some robust methods have
been introduced. For example, the alternating group-lasso
(AGL) and hierarchical iterative reweighted least squares
(IRLS) approaches employ mixed ¢; 2-norm penalties to
promote sparsity and enhance robustness by automatically
pruning irrelevant blocks and columns [10]. Extending the
IRLS framework, the work in [14] proposed a robust BTD-
based denoising method capable of handling sparse outliers
by reweighting the ¢;-norm of sparse components, particu-
larly in hyperspectral imaging. Similarly, [15] presented a
spectral-spatial £y-norm regularized BTD method for hyper-
spectral image denoising. Despite their theoretical strengths,
these methods are designed for a specific type of data (i.e.,
hyperspectral images) and hence limit their practical values
in other applications.

In this study, we contribute to the tensor literature by
introducing Re-LL1, a novel and effective LL1 decomposi-
tion method with regularizations. We design a sparsity-aware
LL1/BTD model that can enforce the compactness of low-
rank components, identify sparse corruptions, and exploit the
inherent smoothness of tensor data. To this end, we incor-
porate a set of carefully designed regularization techniques
that fully exploit the structural properties of LL1 factors. To
solve the resulting optimization problem, we develop an ef-
ficient block-wise augmented Lagrangian method enhanced
with Anderson acceleration, ensuring both fast convergence
and computational stability. Finally, we validate the proposed
method through real-world video background—foreground
separation tasks, where Re-LL1 consistently outperforms
existing state-of-the-art approaches.
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Fig. 1: Regularized LL1 tensor decomposition: Decompose a

tensor X into block low-rank terms plus a sparse component
£ and an additive Gaussian noise NV

2. REGULARIZED LL1 TENSOR DECOMPOSITION

In this work, we consider a time-series tensor X € RI*/*K

which is corrupted by a sparse component £ and an additive
Gaussian noise N, see Fig.1 for an illustration. The LL1 de-
composition of X can be formulated as follows

R
X =Y (AB])oc, +E+N, (D
r=1
where “o” denotes the outer product, matrices A, € RIxL
and B, € R7*L form a rank-L matrix H, = A, B] e RT*/,
and ¢, € RE*! is a non-zero coefficent vector [6]. To sat-
isfy the conditions for essential uniqueness of LL1, we as-
sume that {A,,B,}2, are full column rank matrices and
C =[cy,ca,...,cr] has no proportional columns.

Due to the presence of the sparse component £, stan-
dard optimization approaches for LL1/BTD (e.g., ALS [7]
and NLS [16]) become ineffective for decomposing X in (1).
To address this, we incorporate regularization techniques that
promote sparsity, enforce smoothness, and encourage com-
pactness, thereby improving the accuracy and robustness of
the decomposition, as follows
R 2
X->(AB]oc,)-E
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Here, the first term, based on Frobenius norm, aims to mini-
mize the residual error between the observed data and its esti-
mate, thereby enforcing data fidelity. To promote the sparsity
on £, we propose to use the following £,-norm regularization

1/
Rs(€)=( X l€iil’) 3)
i3,k

for 0 < p < 1. When p = 1, (3) reduces to the most widely-
used ¢;-norm regularization. When p < 1, it becomes non-
convex and more forcefully encouraging zero-valued entries.
Accordingly, (2) is well-suited for capturing sharp, localized
anomalies and outliers in datasets such as moving objects in
video surveillance sequences.

To ensure the inherent smoothness and temporal correla-
tion of times series, we regularize ¢, = 1,2,..., R using

Rr(er) = e[, = e/Leer, )
where Lo € RE*K s a positive semidefinte matrix. In the

context of video processing, L can be chosen as a graph
Laplacian that encodes temporal and/or structural adjacency.

In fact, (4) can be interpreted as a form of Tikhonov regu-
larization. Since Lg > 0, there always exists a matrix I'
such that TT'T = L allowing us to express the regularizer as
Rr(c,) = |Tc,|2. Particularly when L is an identify matrix,
it becomes the standard ¢5-norm regularization that penalizes
large coefficients and avoids ill-posed problems.

To improve the compactness and low rank of block term
factors, we apply the following nuclear norm regularization

Ri(A;,B;) = |A,B] 5)

where (+). denotes the nuclear norm which is the sum of sin-
gular values of a matrix. This is because the nuclear norm
is the tightest convex envelope of the rank function of a ma-
trix. The following lemma provides an alternative formula-
tion of (5), which is utilized by our Re-LL1 method to be
presented in the next section.
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Lemma 1 (Lemma 6 in [17]). For any matrix H € R™*", its
nuclear norm can be obtained by
. 1
H. = awin (AR +|BJ3),
whose global minimizer is achieved at A=UVZ andB =
VX where [U, 2, V] = SVD(H) is the singular value de-
composition (SVD) of H.

Proof. See Appendix A.5 in [17].

3. PROPOSED METHOD

This section presents an effective method for regularized
LL1 decomposition based on the augmented Lagrangian ap-
proach [18].

In this work, we introduce a new dual tensor Y with a
penalty parameter 4 > 0 and reformulate the main objective
function (2) as the following augmented Lagrangian

LM({AT7B7’7CT}§:1’€; y) =
R R
+ MRs(E) + A2 ). Rr(e,) + A3 ), R(A,,B,)

r=1 r=1

w+1
2

where £ = Zf;l (ATBI) o c,. Thanks to the duality theory,
we can find the stationary point of (6) by using the follow-
ing iteration procedure: minimize £, (-) with respect to each
block variable (A, B,.,c, and &), while keeping the others
fixed, and then update the dual variable Y. In particular, at
the (¢ + 1)-th iteration, we perform three main stages:

Stage 1: We update the underlying block low-rank compo-
nents by minimizing the following problem

(Y, x-L-€)+ |x-c-g|. (6)

R 2

i (£) T
argmin Z\ - (ArBr) oc,

(A, B, 2 H ;1 F

R R
+ X2 ) Rr(e)+ A3 ) Ri(A,,B,), (1)
r=1 r=1

w+1

with 20 = x - g® 4 %y@, where £ and y“) are the
estimates of £ and Y from the previous iteration. We solve (7)



by iteratively cycling through r = 1,2,..., R as follows
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Here, the k-th element ¢,
be determined as
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Leveraging Lemma 1, the solution of (10) can be obtained
by performing the truncated singular value decomposition
(SVD) of M), followed by a ——thresholdmg applied on
its top L singular values, as follows

{u = v} -3vD (M“) L), (12)
SO, = max(§:<‘>(l ) - ) 1<l<L, (13)

Af,éﬂ) = UOVEW® ,

Stage 2: We then estimate the sparse component £ (“+1) by

1 e41) | 14(e 2
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where £(4+1) _ Zf,:l (Ag.“l)(Bngl))T) o C$-£+1). Here, we
apply the proximal operator of the function R4(-) as

EUD = prox s, o (X - LD+ Ly©), (16)

p+1?

) of the solution c( D of (9) can

L= Y T3 k). (11)
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For example, when p = 1 or p = 0, the well-known soft- or
hard-thresholding operators can be used, respectively. In the
case of 0 < p < 1, the proximal operator proposed in [19] can
be adopted.

Stage 3: We update the dual variable Y“*?) by maximizing
the Lagrangian function (6) with respect to Y, yielding

YED - Y@ o (pr1)(x - @Y —gED) . (17)

Stopping criterion: The iteration procedure stops when | X -
L -E&|r/|X|F < tol with a predefined tolerance error tol or
when the maximum number of iterations is reached.

Anderson Mixing: To accelerate the iteration procedure, we
apply the Anderson mixing method [20]. Instead of directly
using the closed-form update (11) at every iteration, we ex-
trapolate a new estimate of cgﬁ) from the last m iterations
and residuals. In particular, we construct the following resid-

[g ™D gl gl9], where g =

cfok) - cy”) with k& < ¢. Then, we find the weight vector
zg)/(szg)) where z{*) is obtained by solving the

ual matrix Gg) =

w?) -

following equation

[(GO)GH +ed]2z) =1, (18)
with a damping parameter € > 0. Finally, with a mixing step h,
(¢+1)
we re-update c, as follows

D = Tl WO () (U pgl).  (19)

To improve efficiency, we apply three enhancements. First,
we use a capped and adaptive history strategy, dynamically
adjusting m < mpyax based on recent residuals. Second, we
perform a line search at each iteration to adaptively select
the damping parameter e. Third, we incrementally update the
Cholesky factorization of (Gy) )TG(Z) +e€I, reducing the cost
of the least-squares solve in (18).

4. NUMERICAL EXPERIMENTS
4.1. LL1 Tensor Decomposition

First, we evaluate the performance of Re-LL1 for robust LL1
decomposition with both simulated data and real video data.!
Here, we generate a synthetic tensor X € R40*%0%60 based on
the data model (1). The tensor is constructed using six ran-
dom factors {A,,B,}S_, where A, ¢ R¥0*16 B, ¢ R50x16,
along with the temporal factor C € R%%*6_ All factor ma-
trices are drawn from Gaussian distributions with zero mean
and unit variance. Sparse outliers are introduced in the ten-
sor &€, affecting 10% of the total entries. The magnitudes of
these outliers are scaled to five times the maximum entry of
the tensor. The entries of A are generated from a Gaussian
distribution with a mean of 0 and a variance of 0.1.

In the latter case, we use the Of £1ice surveillance video
dataset which captures people entering and exiting an office
room. This video is represented as a 3rd-order tensor of size
240 x 360 x 300, where 240 x 260 corresponds to the spatial
dimensions of each video frame and 300 denotes the number
of frames considered. The number of block terms and their
rank were set to R = 6 and L = 16, respectively.

We compare the performance of Re-LL1 with three
well-known LL1 decomposition methods, including LLI1-
MINF, LL1-NLS from TensorLab [8], and LL1-BCD [7].
All methods are initialized at random and evaluated using
the reconstruction error (RE) metric, which is defined as

E= ” Xirue — Xreconstruct ”F/H‘;erue ”F We can see from Flg 2
that our method consistently outperforms the others in both
convergence rate and recovery accuracy in the two cases.

4.2. Video Background and Foreground Separation

Next, we demonstrate the effectiveness of Re-LL1 in per-
forming real video background and foreground separation
task on three challenging surveillance video datasets. They
are Highway, PETS2006, and Pedestrians from the

'0ur codes are available at ht tps: //github.com/dangng2501
/Robust-Block-term-Tensor-Decomposition
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Fig. 2: Convergence rate of LL1 decomposition methods.

(a) Synthetic dataset

Table 1: Estimation performance of video background and
foreground separation methods.

Dataset Highway PETS2006 Pedestrians
Frame size 240 x 320 240 x 320 240 x 360
No. frame 300 300 300
Metric F1 mAP F1 mAP F1 mAP
tenRPCA 63.77 | 47.72 | 36.65 | 34.04 | 67.58 76.48
GRASTA 70.61 | 71.15 | 42.65 | 31.48 | 43.02 17.98
fastRPCA 68.04 | 61.92 | 68.11 | 64.80 | 77.16 79.61
BRTF 73.38 | 60.96 | 70.08 | 7040 | 77.16 79.62
Re-LL1 74.58 | 62.17 | 69.30 | 57.38 | 83.83 85.14

CDnet benchmark [21] (see Tab. 1 for their details).?

To have a fair comparison, we evaluate our method against
four state-of-the-art background/foreground separation meth-
ods,? including tenRPCA [22], GRASTA [23], fastRPCA [24]
and BRTF [25]. Their algorithmic parameters are kept in the
default settings. Note that they require a small batch of train-
ing video frames to initialize their warm starts.

For Re-LL1, its factors are initialized randomly. Hyper-
parameters are selected via grid search over a validation sub-
set of the training data. Specifically, the sparsity regular-
ization parameter )\; is varied over {107,107, 1,10} and
the Tikhonov regularization Ao over {103,107} to balance
low-rank fidelity with robustness to outliers. The penalty pa-
rameter 4 and the acceleration step size h are tuned from
{0.01,0.1,1} and {0.5, 1.0}, respectively. The hyperparame-
ter set is chosen based on the lowest validation reconstruction
error and the best F1/mAP scores, and these values are then
fixed for all subsequent test datasets.

To measure the performance of separation algorithms, we
employ two widely-used metrics: FI score and mean Aver-
age Precision (mAP). These metrics evaluate the accuracy
and robustness of the detected foreground mask compared to
ground truth annotations. The F1 score is the harmonic mean
of Precision and Recall, defined as:

Precision - Recall

F1=2 20
Precision + Recall’ (20)

where Precision is the ratio of true positives over predicted
positives and Recall is the ratio of true positives over actual
positives. While mAP is a threshold-independent metric that
evaluates the area under the Precision-Recall curve for each

2Video data: http://jacarini.dinf.usherbrooke.ca/

3In the video background and foreground separation task, we omit the
comparison of Re-LL1 with LL1-MINF, LL1-NLS, and LL1-BCD, as these
methods are not specifically designed for this application.
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Fig. 3: Video foreground separation results.

frame, then averages over all frames:

1 N 1
mAP=— 3" f Precision; (r) dr, (21)
N = Jo

where N is the number of video frames and Precision;(r) is
the precision at recall r for the ¢-th frame. Their higher values
indicate better algorithm performance. We refer the readers to
[21,26-28] for further details.

Fig. 3 illustrates video foreground separation results while
Table 1 reports the F1 score and mAP metrics for all meth-
ods across four real videos. Our Re-LL1 method achieves
the best performance on the Highway (74.58% F1) and the
Pedestrians (83.83% F1, 85.14% mAP) data. It outper-
forms tenRPCA by +10.81% in F1 and 14.45% in mAP on
the former data, and by 16.25% in F1 and 8.66% in mAP on
the latter data. While fastRPCA achieves reasonable separa-
tion accuracy on both datasets, its performance is consistently
lower than that of Re-LL1. GRASTA achieves the best mAP
metric on the Highway data, but its F1 score is lower than
our method in both datasets. On the PETS2006 video, Re-
LL1 results in 69.30% F1 and 57.38% mAP, closely matching
BRTF’s top F1 score of 70.08%. It also surpasses fastRPCA,
tenRPCA, and GRASTA in F1 score by 1.19%, 32.65%, and
26.65%, respectively.

5. CONCLUSIONS
We have proposed an efficient and effective method for LL1-
tensor decomposition, called Re-LL1, which jointly recovers
low-rank and identifies sparse components from contami-
nated tensor data. By integrating Anderson mixing acceler-
ation along with both block-wise and variable-wise updates,
Re-LL1 achieves fast convergence. Experiments on synthetic
and real video datasets demonstrate that Re-LL1 requires
significantly fewer iterations and offers superior reconstruc-
tion accuracy compared to standard methods such as LL1-
MINF, LL1-NLS, and LL1-BCD. Its effectiveness on real
datasets was further demonstrated through video background
and foreground separation tasks. Future work will explore
adaptive penalty schemes, dynamic rank selection, Bayesian
approaches, and extensions to streaming block-term models.
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