
FAST AND ROBUST TRIPLE TENSOR DECOMPOSITION WITH DATA CORRUPTION

Nguyen Quy Dang⋆♯, Do Minh Nhat⋆♯, Thanh Trung Le⋆, Nguyen Linh Trung⋆, Karim Abed-Meraim†

⋆ VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
† PRISME Laboratory, University of Orleans, France

ABSTRACT
In this paper, we study the problem of tensor triple decom-
position in the presence of data corruption and propose a
fast and robust algorithm, called TriTD-ADMM. Data cor-
ruption is modeled as a sparse residual component penalized
by the ℓ1-norm regularization. To address it efficiently, we
design an effective alternating direction method of multi-
pliers (ADMM) equipped with a proximal operator for the
ℓ1-regularizer and adaptive penalty updates. Moreover, we
develop a reshape–permute acceleration strategy (RPAS) that
replaces expensive Kronecker-based computations with ef-
ficient operations, thereby further improving optimization
efficiency. Experimental results on real-world datasets show
that TriTD-ADMM achieves competitive accuracy and sig-
nificant speedups, ranking as the fastest method on seven out
of eight benchmarks.

Index Terms— Tensor decomposition, triple decomposi-
tion, ADMM, data corruption, ℓ1-norm regularization.

1. INTRODUCTION
Tensors (multiway arrays) offer a natural representation for
multivariate and high-dimensional datasets across space,
time, and modalities [1]. Accordingly, tensor decomposition
have enabled significant advances in compression, comple-
tion, and representation learning, with applications ranging
from biomedical signal processing, hyperspectral imaging,
streaming video, and communication systems [2–6], among
others. Most of these applications are built upon two founda-
tional tensor formats: CP and Tucker. The former factorizes a
tensor into rank-1 components, offering strong identifiability
and uniqueness guarantees under mild conditions, whereas
the latter trades identifiability for flexibility by introducing a
core tensor [1]. However, with the emergence of large-scale
and increasingly complex structure datasets, striking a bal-
ance among compactness, effectiveness and computational
scalability still remains a challenge.

Recently, triple tensor decomposition (TriTD) was pro-
posed as a more flexible alternative to CP and Tucker [7].
TriTD factorizes a third-order tensor into three smaller core
tensors of the same order and introduces the notion of triple
rank, which can be strictly lower than the corresponding CP
or Tucker ranks. Consequently, TriTD has found some nice

♯ Quy Dang and Minh Nhat are co-first authors. Corresponding author:
Thanh Trung Le (thanhletrung@vnu.edu.vn)

applications such as spatio-temporal traffic completion [8],
link-load recovery [9], hyperspectral super-resolution [10],
and online video completion [11].

Related Works: The original TriTD solver adopts a
Tikhonov-regularized alternating least-squares (ALS) method
[7], which offers efficient least-squares recovery for third-
order tensors and establishes the foundation for later TriTD
methods. Building on this framework, Chen et al. in [8]
introduced a Barzilai–Borwein gradient algorithm for spa-
tio–temporal traffic completion, enabling scalable recovery
of large-scale Internet traffic data with accelerated conver-
gence. Wu et al. in [12] incorporated manifold regularization
and nonnegativity for image compression and representation,
demonstrating the benefit of preserving intrinsic geometric
structure while enforcing physically meaningful nonnegative
factors of TriTD for real-world data. Liao et al. in [13] inte-
grated a hypergraph prior to capture higher-order sample rela-
tions, improving clustering performance by explicitly model-
ing complex inter-sample dependencies. Cui et al. in [10]
adapted TriTD to hyperspectral super-resolution, show-
ing that low-rank modeling can effectively fuse multispec-
tral and hyperspectral data for high-quality reconstruction.
Ming et al. in [9] applied TriTD to link-load recovery in
communication networks, achieving reasonable load esti-
mation and underscoring its practical relevance for network
management. Most recently, Thanh et al. in [11] proposed
an adaptive TriTD variant for streaming tensors and demon-
strated its effectiveness in video completion tasks. Despite
these advances, existing TriTD methods primarily rely on
squared-error objectives, which are highly sensitive to data
corruption. Moreover, they still depend on large Kronecker
matrix constructions, which significantly inflate memory
usage and computational cost when handling large-scale ten-
sors. These limitations motivate the development of a more
efficient and robust TriTD method capable of handling cor-
rupted and large-scale data.

Contributions: In this paper, we introduce TriTD-ADMM,
a fast and robust method for triple tensor decomposition based
on the alternating direction method of multipliers (ADMM).
Our approach updates the core tensors via ridge-regularized
least squares (RLS) applied to mode-wise unfoldings. To ac-
celerate computation, we propose a reshape–permute acceler-
ation strategy (RPAS) that avoids explicit Kronecker matrix
construction and yields smaller Gram matrices for efficient

X

I

J

K

=

A I

r
r

BJ

r r

C
K

r

r
+ O + N

Fig. 1. Robust triple tensor decomposition with sparse cor-
ruption O and an additive noise N .

RLS updates. To handle data corruption, we incorporate con-
vex ℓ1-norm regularization through soft-thresholding with
lightweight dual updates. The ADMM framework, enhanced
with adaptive penalty parameter updates, provides a simple
yet effective solver for both primal and dual variable. Ex-
tensive experiments on eight real-world datasets demonstrate
that TriTD-ADMM achieves competitive estimation accuracy
while delivering strong runtime performance.

Notations: Scalars are written in lowercase letters (e.g., x),
and vectors in bold lowercase (e.g., x). Bold uppercase letters
(e.g., X) denote matrices, whereas bold calligraphic letters
(e.g., X) represent tensors. The symbols ◦,⊙, and⊗ indicate
the outer, Hadamard, and Khatri-Rao products, respectively.
Matrix transpose is indicated by (·)⊤. The notation ∥ · ∥ is use
to denote the norm of a vector, matrix, or tensor. The mode-n
unfolding of X is written as X(n). For X ∈RI×J×K , the op-
erator permute(X , [π1, π2, π3]) reorders its modes according
to a permutation, e.g., permute(X , [2, 3, 1]) maps (i, j, k) 7→
(j, k, i). Similarly, reshape(Z, [d1, d2, . . . , dm]) changes
only the view of the data into dimensions d1 × d2 × · · · × dm.

2. TRIPLE TENSOR DECOMPOSITION
Given a third-order tensor X ∈RI×J×K , its triple decompo-
sition (TriTD) is defined as

X =

r∑
p=1

r∑
q=1

r∑
s=1

A:,p,q ◦ Bs,:,q ◦ Cs,p,:, (1)

where A∈RI×r×r, B∈Rr×J×r, and C ∈Rr×r×K are core
tensors (loading factors) [7]. The smallest integer r that satis-
fies (1) is called the triple rank, denoted by TriRank(X). For
brevity, we express (1) as X = TriTD(A,B,C). The TriTD
model also exhibits several useful properties.

Compactness: If X admits the Tucker/HOSVD decom-
position with Tucker rank [r1, r2, r3], then its triple rank is
upper bounded as TriRank(X) ≤ middle{r1, r2, r3}, i.e.,
no larger than the median of its Tucker rank parameters [7,
Theorem 3.4]. Furthermore, CP/PARAFAC can be viewed
as a special case of TriTD, and the triple rank also satis-
fies TriRank(X) ≤ CPRank(X) [7, Theorem 3.3]. To-
gether, these bounds demonstrate the compactness of TriTD:
it can provide a lower-dimensional representation than CP and
Tucker. In particular, any dataset that admits a low-rank CP
or Tucker approximation can likewise be well-approximated
by a low-rank triple decomposition.

Matricization (Unfolding): Let A≜A(1)∈RI×r2 , B≜

B(2) ∈RJ×r2 , and C≜C(3) ∈RK×r2 . The unfolding matri-
ces of X can be expressed in the following bilinear forms:

X(1) = AF, X(2) = BG, and X(3) = CH, (2)

where F ∈ Rr2×JK ,G ∈ Rr2×IK and H∈Rr2×IJare ma-
trices of Kronecker structure. For brevity, we provide only
the closed-form expression of F:

F = (Ir ⊗ B̄)(C⊤ ⊗ Ir), (3)

where B̄ ∈ Rr×Jr with element B̄(r2, j + (r1 − 1)J) =
B(r1, j, r2) for 1 ≤ r1, r2 ≤ r and 1 ≤ j ≤ J . The closed-
form expressions of G and H are analogous, see [8] for de-
tails. Thanks to (2), Qi et al. in [7] obtained an alternating
least-squares (ALS) framework for computing A,B, and C.

Alternating Least Squares (ALS): ALS offers an itera-
tive scheme for estimating the core tensors using least-squares
solvers. At each iteration, A is updated as

A(1) ←
(
X(1)F

⊤) (FF⊤ + αIr2
)−1

, (4)
where α is a small regularization parameter. The updates for
B and C are obtained analogously via G and H respectively.
See [7] for their derivations and other ALS variants for TriTD.

3. PROPOSED METHOD
In this study, we investigate the robust TriTD in the presence
of data corruption. Let X ∈ RI×J×K denote the observed
tensor, which is contaminated by sparse corruption O and a
Gaussian noise N :

X = TriTD(A,B,C) +O +N , (5)
where L = TriTD(A,B,C) represent the structured low-
rank component.

Optimization Framework: We propose to estimate com-
ponents {A,B,C,O} by solving the following minimization

argmin
A,B,C,O,E

λ∥E∥1 +
α1

2
∥A∥2F +

α2

2
∥B∥2F +

α3

2
∥C∥2F

subject to X = L+O and E = O, (6)
where λ and {αi}3i=1 are regularization parameters. The first
term ∥E∥1 using ℓ1-norm is to enforce the sparsity on the out-
lier component E . The last three terms using ℓ2-norm are
used as the regularization to improve stability and prevent ill-
posed issues. The corresponding augmented Lagrangian is
then given by
L(A,B,C,O,E;YL,YO) = λ∥E∥1 + ⟨YO, E −O⟩

+
µO

2
∥E −O∥2F +

α1

2
∥A∥2F +

α2

2
∥B∥2F +

α3

2
∥C∥2F

+ ⟨YL, X −L−O⟩+ µL

2
∥X −L−O∥2F . (7)

Here, YO and YL denote the Lagrange multipliers (dual vari-
ables), while µO and µL are the corresponding penalty param-
eters. To find a stationary point of (7), we adopt the following
procedure consisting of: (i) minimizing L(·) with respect to
each primal variable while keeping the others fixed, and (ii)
updating the dual variables by maximizing L(·). Our method,

Algorithm 1 Robust Triple Tensor Decomposition via
ADMM (TriTD-ADMM)
Require: Tensor X ∈ RI×J×K ; target rank r; sparsity weight λ >

0; tolerance ε > 0; iterations MAXITER; parameters {αi}3i=1.
Ensure: Factors (A,B,C); sparse component O; auxiliary copy E

Operators: TriTD(A,B,C), RPAS(·, ·) of two core tensors
A, B or C; and soft(X , τ) = sign(X)⊙max(|X | − τ, 0);

1: Initialize: A0,B0,C0 (e.g., at random or SVD-based); O0 =
E0 = 0; dual variables Y0

L = Y0
O = 0

2: Set penalties µ0
L, µ

0
O > 0, growth rates ρL, ρO > 1, caps

µmax
L , µmax

O

3: for ℓ = 0 to MAXITER do
Low-rank Update (ALS over TriTD factors)

4: T ℓ ← X −Oℓ +Yℓ
L/µ

ℓ
L

5: Fℓ ← RPAS(Bℓ,Cℓ)
6: Gℓ ← RPAS(Aℓ,Cℓ)
7: Hℓ ← RPAS(Aℓ,Bℓ)

8: Aℓ+1 ←
(
T ℓ
(1) (F

ℓ)⊤
)(
Fℓ(Fℓ)⊤ + α1Ir2

)−1

9: Bℓ+1 ←
(
T ℓ
(2) (G

ℓ)⊤
)(
Gℓ(Gℓ)⊤ + α2Ir2

)−1

10: Cℓ+1 ←
(
T ℓ
(3) (H

ℓ)⊤
)(
Hℓ(Hℓ)⊤ + α3Ir2

)−1

11: Lℓ+1 ← TriTD(Aℓ+1,Bℓ+1,Cℓ+1)
Sparse Update

12: Rℓ
1 ← X −Lℓ+1 +Yℓ

L/µ
ℓ
L, Rℓ

2 ← Eℓ −Yℓ
O/µ

ℓ
O

13: Oℓ+1 ← µℓ
LRℓ

1 + µℓ
ORℓ

2

µℓ
L + µℓ

O
Auxiliary copy (proximal step)

14: R3 ← Oℓ+1 +Yℓ
O/µ

ℓ
O

15: Eℓ+1 ← soft(R3, λ/µ
ℓ
O)

Dual Ascent
16: Rℓ+1

L ← X −Lℓ+1 −Oℓ+1, Rℓ+1
O ← Oℓ+1 − Eℓ+1

17: Yℓ+1
L ← Yℓ

L + µℓ
L Rℓ+1

L , Yℓ+1
O ← Yℓ

O + µℓ
O Rℓ+1

O

Adaptive Penalty Update
18: µℓ+1

L ← min(ρLµ
ℓ
L, µ

max
L)

19: µℓ+1
O ← min(ρOµ

ℓ
O, µ

max
O)

Stopping Rule
20: errℓ+1 ← ∥Rℓ+1

O ∥F + ∥Rℓ+1
L ∥F

21: if errℓ+1 ≤ ε then break
22: return {Aℓ+1,Bℓ+1,Cℓ+1; Oℓ+1}

called TriTD-ADMM, is summarized in Algorithm 1.
Reshape–Permute Acceleration Strategy (RPAS): In

Algorithm 1, the most computational cost come from the
low-rank update stage, which involves solving ridge least-
squares problems (see lines 8, 9, and 10). This requires
constructing a design matrix {F,G,H} from two of the
three cores. Using the standard formulation (3) to compute
them directly is costly, as it involves two Kronecker products
followed by a large matrix–matrix multiplication.

To alleviate this bottleneck, we introduce the Reshape
Permute Acceleration Strategy (RPAS). Here, we retain the
same ridge least-squares subproblems, Zℓ+1 = (T ℓ

(i)(M
ℓ)⊤)

(Mℓ(Mℓ)⊤ + α Ir2)
−1, where (Z,M, i) ∈ {(A,F, 1),

(B,G, 2), (C,H, 3)}. However, we compute F,G, and H
in a Kronecker-free manner using only reshape/permute
operators and a single general matrix multiplication per mode.

Specifically, in mode 1, the matrix F can be efficiently com-
puted from B and C as

F = reshape
(
reshape

(
permute(B, [2, 3, 1]), [Jr, r]

)
× reshape

(
C, [r, rK]

)
, [r2, JK]

)
, (8)

For short, we denote (8) as F = RPAS(B,C). Similarly, in
mode 2 and mode 3, we also obtain G = RPAS(A,C) and
H = RPAS(A,B). With this approach, the cost of construct-
ing F,G, and H is reduced from O(n3r4) flops to O(n2r3)
flops, assuming I = J = K = n. Thus, the overall computa-
tional complexity of TriTD-ADMM is then given as follows.

Computational complexity: At each iteration, TriTD-
ADMM updates loading factors {A,B,C} via: (i) construct-
ing a mode-specific design M (i.e., M can be F,G,H)
using RPAS which costs O(n2r3) flops; (ii) computing a
data–design product T(i)M

⊤ with complexityO(n3r2) flops;
and (iii) solving a small ridge system with Gram matrix
MM⊤ of size r2 × r2, requiring O(n2r4 + r6) flops. The
dual variable updates require an additional O(n3) flops.
Accordingly, the total computational complexity of TriTD-
ADMM is O(3n3r2 + 3n2r4 + 3r6) flops for each iteration.

Convergence Analysis: The following lemma establishes
the convergence of TriTD-ADMM. Due to the space limit, we
omit the proof here and will provide it in the extended journal.
Lemma 1 Denote S(t) = {X (t),A(t),B(t),C(t),O(t),E(t),

Y(t)
L ,Y(t)

O }t∈N the solution generated by Algorithm 1 at each
iteration t. When t → ∞, the sequence {S(t)}∞t=1 converges
almost surely to a stationary point of (7).

4. EXPERIMENTS
In this section, we conduct several numerical experiments
on real-world datasets to demonstrate the efficacy of TriTD-
ADMM, in comparison with state-of-the-art tensor methods.1

Real-World Datasets: In this work, we investigate two
tasks with real datasets: tensor completion and video back-
ground modeling. For tensor completion, we evaluate per-
formance on four datasets with diverse spatiotemporal struc-
tures: sensor (52×4×2994),2 taxi (265×265×500),3

network (23×23× 1152),4 and chicago (77×77×2016).5

The evaluation metrics are run time (wall-clock time) and rel-
ative reconstruction error, defined as

RRE = ∥Xtrue −Xrecover∥F /∥Xtrue∥F . (9)
For the video background modeling, we use four video se-
quences from the CDnet 2014 dataset: Highway (240×320

1Our codes are available at https://github.com/dangnq2501/
Triple-Tensor-Decomposition-with-ADMM

2sensor data: https://db.csail.mit.edu/labdata/
labdata.html

3taxi data: https://www.nyc.gov/site/tlc/about/
tlc-trip-record-data.page

4network data: https://www.cs.utexas.edu/ yzhang/
research/AbileneTM/

5chicago data: https://data.cityofchicago.org/
Transportation/Taxi-Trips/wrvz-psew

Table 1. Comparison of tensor-based methods for tensor completion.
Dataset sensor taxi network chicago
Tensor size 52× 4× 2994 265× 265× 500 23× 23× 1152 77× 77× 2016

Evaluation metric RRE Time(s) RRE Time(s) RRE Time(s) RRE Time(s)

Sofia 0.341 15.95 0.584 598.24 0.963 12.01 0.352 194.36

TRLRF 0.316 25.58 0.280 1799.52 0.126 41.06 0.311 1318.22

RC-FCTN 0.337 2.46 0.380 128.44 1.083 5.08 0.247 29.30

TTNN 0.558 4.45 0.307 340.42 0.999 7.39 0.316 264.73

TriTD-ADMM (Ours) 0.279 2.53 0.338 53.90 0.143 1.72 0.321 20.69

×300), Office (240×320×300), PETS2006 (240×360
×300), and Sofa (240×360×300).6 Here, we select only
300 consecutive frames from each video sequence to con-
struct the tensor X .

We compare the performance of TriTD-ADMM against
several strong baselines, including Sofia [14], TRLRF [15],
RC-FCTN [16] and TTNN [17]. Their algorithm parameters
were fine-tuned to achieve their best performance.

Experimental Results: Our results are presented statisti-
cally in Tab. 1 and graphically in Fig. 2. Tab. 1 summarizes
the completion performance of tensor-based methods with
10% missing observations. In this setting, our method treated
the missing elements as corrupted data and we fixed the triple
rank to 5 for all datasets. We can see that, TriTD-ADMM con-
sistently achieves the lowest or near-lowest runtime across all
four datasets while maintaining competitive completion ac-
curacy. Particularly on the sensor dataset (small scale),
TriTD-ADMM attains the most accurate completion with a
near-minimum runtime of 2.53 s, within 3% of the fastest
method, RC-FCTN (2.46 s), and significantly faster than
Sofia (15.95 s, 6.30×), TRLRF (25.58 s, 10.11×) and TTNN
(4.45 s, 1.76×). On the taxi dataset (large scale), TriTD-
ADMM is the fastest method (53.90 s) with reasonable RRE
(0.338), outperforming Sofia (598.24 s, 11.10×), TRLRF
(1799.52 s, 33.39×), TTNN (340.42 s, 6.32×), and RC-
FCTN (128.44 s, 2.38×). On the network and chicago
datasets (moderate scale), TriTD-ADMM maintains compet-
itive estimation accuracy while consistently ranking among
the fastest methods.

Fig. 2 illustrates the video background modeling on
four BMC sequences (Highway, Office, PETS2006,
and Sofa). In this task, our method represents the video
background as the low-rank component L and the fore-
ground objects as the sparse component O, following the
data model in (5). As shown in the last column of Fig. 2,
TriTD-ADMM (Triple) effectively separates the video fore-
ground from the background across all four sequences.
TTNN and TRLRF perform reasonably well when the video
frames contain fewer moving objects (e.g., PETS2006), but
they tend to absorb moving objects into the background in
more dynamic scenes such as Highway. RC-FCTN and
Sofia perform poorly, failing to achieve reliable video back-

6CDnet 2014 data: http://jacarini.dinf.usherbrooke.ca/

Observed

H
ig

h
w

a
y

FG TTNN

201.47 s

Sofia

370.57 s

TRLRF

1031.97 s

RC-FCTN

50.64 s

Triple

33.68 s

S
o

fa

225.50 s 419.57 s 1147.48 s 56.92 s 37.05 s

O
ff

ic
e

226.36 s 424.15 s 1148.17 s 56.64 s 43.98 s

P
E

T
S

2
0
0
6

229.23 s 395.39 s 1215.11 s 92.62 s 35.93 s

Fig. 2. Video background modeling on four BMC sequences
with running time (s). FG denotes video foreground.

ground. With respect to run time, TriTD-ADMM is the fastest
method in all video sequences, with run times of 33.68 s
(Highway), 37.05 s (Sofa), 43.98 s (Office), and 35.93 s
(PETS2006). Our method is faster than 1.29−2.58 times
than RC-FCTN (50.64 s−92.62 s), 5.15−6.38 times than
TTNN (201.47 s−229.23 s), 26.1−33.8 times than TRLRF
(1031.97 s−1215.11 s), and 9.64−11.32 times than Sofia
(370.57 s−424.15 s). These results highlight the efficacy of
our method in this task.

5. CONCLUSIONS AND FUTURE WORKS
We proposed a fast and robust triple tensor decomposition
method via ADMM, designed to effectively handle data cor-
ruption. Our method achieves state-of-the-art performance
in tensor completion and video background modeling, while
achieving substantial computational speedups through the
RPAS acceleration strategy and efficient ADMM optimzation
framework. Experiments on real-world datasets demon-
strate that our method achieves a good balance between
accuracy and efficiency, particularly on moderate and large
scale datasets. Nonetheless, the current solver requires a fixed
triple rank, which can limit performance when low-rank com-
ponents vary rapidly. Promising directions for future work
include: (i) automatic or adaptive rank selection, (ii) stochas-
tic or online ADMM for streaming data, and (iii) system-level
optimizations such as GPU-friendly reshape–permute kernels
and batched Cholesky/PCG solvers for RLS updates.

6. REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions
and applications,” SIAM Rev., vol. 51, no. 3, pp. 455–
500, 2009.

[2] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield,
M. A. Nicolaou, A. Anandkumar, and S. Zafeiriou,
“Tensor methods in computer vision and deep learning,”
Proc. IEEE, vol. 109, no. 5, pp. 863–890, 2021.

[3] H. Chen, F. Ahmad, S. Vorobyov, and F. Porikli, “Tensor
decompositions in wireless communications and MIMO
radar,” IEEE J. Sel. Topics Signal Process., vol. 15,
no. 3, pp. 438–453, 2021.

[4] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafi-
ane, “A contemporary and comprehensive survey on
streaming tensor decomposition,” IEEE Trans. Knowl.
Data Eng., vol. 35, no. 11, pp. 10897–10921, 2023.

[5] M. Wang, D. Hong, Z. Han, J. Li, J. Yao, L. Gao,
B. Zhang, and J. Chanussot, “Tensor decompositions
for hyperspectral data processing in remote sensing:
A comprehensive review,” IEEE Geosci. Remote Sens.
Mag, vol. 11, no. 1, pp. 26–72, 2023.

[6] N. Tokcan, S. S. Sofi, C. Prévost, S. Kharbech, B. Mag-
nier, T. P. Nguyen, Y. Zniyed, and L. De Lathauwer,
“Tensor decompositions for signal processing: Theory,
advances, and applications,” Signal Process., vol. 238,
p. 110191, 2025.

[7] L. Qi, S. K. Mishra, Z. Luo, and Y. Wang, “The triple de-
composition and tensor recovery of third order tensors,”
SIAM J. Matrix Anal. Appl., vol. 42, no. 1, pp. 299–329,
2021.

[8] Y. Chen, X. Zhang, L. Qi, and Y. Xu, “A Barzilai–
Borwein gradient algorithm for spatio-temporal internet
traffic data completion via tensor triple decomposition,”
J. Sci. Comput., vol. 88, no. 3, p. 65, 2021.

[9] Z. Ming, Z. Qin, L. Zhang, Y. Xu, and L. Qi, “Network
traffic recovery from link-load measurements using ten-
sor triple decomposition strategy for third-order traffic

tensors,” J. Comput. Appl. Math., vol. 447, p. 115901,
2024.

[10] X. Cui, R. Dong, and J. Li, “Hyperspectral super-
resolution via low rank tensor triple decomposition,” J.
Ind. Manag. Optim., vol. 20, no. 3, pp. 942–966, 2024.

[11] T. T. Le, N. H. Thinh, L. M. Ha, T. T. T. Quynh, L. V.
Ha, V.-T.-L. Hoang, K. Abed-Meraim, P. Ravier, and
O. Buttelli, “Low-rank triple decomposition of stream-
ing tensors and its application to video completion,” in
Proc. 24th Int. Symp. Commun. Inf. Technol., pp. 97–
102, 2025.

[12] F. Wu, C. Li, and Y. Li, “Manifold regularization non-
negative triple decomposition of tensor sets for im-
age compression and representation,” J. Optim. Theory
Appl., vol. 192, no. 3, pp. 979–1000, 2022.

[13] Q. Liao, Q. Liu, and F. A. Razak, “Hypergraph regular-
ized nonnegative triple decomposition for multiway data
analysis,” Sci. Rep., vol. 14, no. 1, p. 9098, 2024.

[14] D. Lee and K. Shin, “Robust factorization of real-world
tensor streams with patterns, missing values, and out-
liers,” in Proc. 37th IEEE Int. Conf. Data Eng., pp. 840–
851, 2021.

[15] L. Yuan, C. Li, J. Cao, and Q. Zhao, “Rank minimization
on tensor ring: An efficient approach for tensor decom-
position and completion,” Mach. Learn., vol. 109, no. 3,
pp. 603–622, 2020.

[16] Y.-Y. Liu, X.-L. Zhao, G.-J. Song, Y.-B. Zheng, and T.-
Z. Huang, “Fully-connected tensor network decomposi-
tion for robust tensor completion,” Inverse Probl. Imag-
ing., vol. 18, no. 1, pp. 208–238, 2024.

[17] J.-H. Yang, X.-L. Zhao, T.-Y. Ji, T.-H. Ma, and T.-Z.
Huang, “Low-rank tensor train for tensor robust princi-
pal component analysis,” Appl. Math. Comput., vol. 367,
p. 124783, 2020.

