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ABSTRACT
In this paper, we propose a memory-efficient tensor network,
called TriNet decomposition, designed for modeling higher-
order dependencies in multivariate and high-dimensional data.
By introducing “relay” factors, TriNet can connect core (load-
ing) factors while restricting their order to at most three, yield-
ing a compact tensor representation. To compute both tensor
decomposition and completion, we develop an effective algo-
rithm based on the alternating direction method of multipliers.
Experimental results demonstrate that our method offers a fa-
vorable balance between space complexity and computational
efficiency, while still achieving competitive estimation accu-
racy as compared to state-of-the-art tensor methods.

Index Terms— Tensor decomposition, TriNet decomposi-
tion, tensor networks, tensor completion, ADMM.

1. INTRODUCTION
Tensor decomposition (TD) has become a powerful processing
tool for analyzing multidimensional and multivariate data in
both batch and adaptive settings [1–3]. With its capability to
factorize tensors (aka multiway arrays) into basic components,
TD has successfully demonstrated its applications in various
signal processing tasks [4].

With the growing need to model complex interactions
across multiple dimensions in modern datasets, many TD tech-
niques have been developed. Among these, CP/PARAFAC and
Tucker/HOSVD are two of the most classical tensor models,
often used to capture multiway relationships and provide low-
rank structures in tensor data [1]. However, many problems
related to CP/PARAFAC are NP-hard (e.g., determining the
CP rank and computing the best low-rank approximation) [5].
While Tucker/HOSVD suffers from the so-called “curse of
dimensionality”, where the number of parameters required
grows exponentially with the tensor order [6], see Table 1. To
address these limitations, tensor networks (TN) have emerged
as advanced formats that can efficiently represent higher-order
tensors [7].

Among TNs, the tensor-train (TT) decomposition factor-
izes an N th-order tensorX into a sequence of N−2 third-order
tensors in the middle and two matrices at the ends [8]. These
components are linked together through contracted modes us-
ing multilinear operations. To enhance the flexibility of TT,
tensor ring (TR) model replaces the two “end” matrices with
third-order tensors, yielding a circularly interconnected struc-
ture of core tensors [9]. Despite their efficiency and compact-
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ness, both TT and TR primarily capture interactions between
adjacent cores, which may limit their ability to model long-
range dependence of tensor data.

To overcome this drawback, the fully connected tensor
network (FCTN) model was introduced, which decomposes
X into N core tensors with full pairwise connections among
all cores [10]. To achieve a better balance between flexibility
and efficiency, the tensor wheel (TW) model was later pro-
posed [11]. In TW, N core tensors are arranged around a
central tensor, where each core is strongly connected to its
neighbors while maintaining global coherence through the
central tensor. Despite these advances, FCTN and TW still
have inherent limitations. Their space complexity grows ex-
ponentially with the tensor order. Particularly, FCTN requires
each core to be of order N , leading to substantial space com-
plexity for higher-order tensors. TW requires each core to
be fourth-order, but also depends on a central tensor of order
N to coordinate correlations among all cores. Consequently,
both models still suffer the “curse of dimensionality”, simi-
lar to Tucker/HOSVD. Recently, the tensor star (TS) model
was proposed, providing a more compact structure than TW
with improved representation capability and reduced space
complexity [12]. However, TS still incurs high computational
and storage costs, since updating N fourth-order tensors is
computationally expensive. In addition, direct correlations are
limited to adjacent core tensors, requiring a large number of
central tensors to bridge long-range dependencies.

Unlike classical CP, Tucker, and TN formats, tensor SVD
(t-SVD) provides an interesting TD model for third-order
tensors by operating in the Fourier domain [13]. However,
its extensions to higher-order tensors typically require either
all loading factors of order N [14] or a core tensor of or-
der N [15], where N denotes the order of the original tensor.
As a result, t-SVD still suffers from the “curse of dimension-
alit” and may not be efficient for representing large-scale,
higher-order tensors.

In this paper, we propose a compact tensor network model,
called TriNet decomposition. The advantage of TriNet stems
from its triangular connectivity among loading factors, while
ensuring that each factor is of at most third order. This rep-
resentation allows for an effective exploitation of correlations
between adjacent core tensors compared to existing methods.
Specifically, when mod(N,3) = 2 (modulo operation), the
N -th order tensor X is decomposed into N − 1 third-order
core factors and one matrix, along with 2⌊N/3⌋ + 1 relay fac-
tors of third-order. Otherwise, it is decomposed into N third-



Table 1: Space complexity of TD models for decomposing an
N -th order tensor X ∈ RI×I×⋅⋅⋅×I (N ≥ 3). Assume that all
rank parameters in these TD models are equal to r.

Model Space Complexity Model Space Complexity

CP O(NIr) FCTN O(NIrN−1)
Tucker O(NIr + rN ) TW O(NIr3 + rN )
TT O((N − 2)Ir2 + 2Ir) TS O(NIr2 +Nr4)
TR O(NIr2) TriNet O(NIr2 + 2 ⌊N

3
⌋ r3)

tSVD O(2IN−1r + IN−2r2) orO(NI2 + IN )

order core factors and 2⌊N/3⌋ relay factors. Thanks to its
lightweight structure, the proposed model is well suited for
higher-order tensor data. We then develop an efficient and
provable alternating direction method of multipliers (ADMM)
for computing the TriNet decomposition and tensor comple-
tion. Experimental results on both synthetic and real-world
datasets further demonstrate its effectiveness and superiority
over state-of-the-art tensor decomposition models. See Table 1
for a comparison of the space complexity across state-of-the-
art tensor models.

2. TENSOR NOTATIONS AND OPERATIONS
In this paper, we denote scalars, vectors, matrices, and ten-
sors by x, x, X, and X , respectively. For an N -th order ten-
sor X ∈ RI1×I2×⋅⋅⋅×IN , its (i1, i2, ..., iN )-th element is denoted
as X (i1, i2, ..., iN). The Frobenius norm of X is defined as
∣∣X ∣∣F =

√
∑i1,i2,...,iN X (i1, i2, ..., iN)2. We denote byXn∶m

the set (Xn,Xn+1, . . . ,Xm) with n ≤ m. The nuclear norm
of a matrix is denoted by ∣∣ ⋅ ∣∣∗. The modulo mod(a, b) returns
the remainder of a when divided by b. Given an ordering vec-
tor n = [n1, n2, . . . , nN ], which is a permutation of the vec-
tor [1,2, . . . ,N], the tensor permutation is denoted as

Ð→X n =
permute(X ,n) with its inverse X = ipermute(

Ð→X n,n).
The mode-d unfolding matrix ofX is represented by X[d]

or (X)[d], whose entries are given by
X[d](id, id+1 . . .iN i1 . . . id−1) = X (i1, i2, . . . , iN),

where j1j2 . . . jn is a multi-index used in matricization for ten-
sors, defined as in [7]. For easy of presentation, we denote
X[d] = Unfold[d](X ) and its inverse X = Fold[d](X[d]).

The generalized unfolding operator for a given mode d and
the ordering vector n is defined as

X[n;d](in1 . . . ind
, ind+1

. . . inN
) =
Ð→X n(in1 , in2 , . . . , inN

).
We also denote X[n;d] = Unfold[n1∶d;nd+1∶N ](X ) and its in-
verse X = Fold[n1∶d;nd+1∶N ](X[n;d]). In the case d = 0, the
unfolding operator reduces to the vectorization operator.

The generalized tensor contraction is as follows. Given
Y ∈ RJ1×J2×⋯×JM with Ini = Jmi for i = 1,2, . . . , d, the con-
traction of X and Y along n1∶d- and m1∶d-modes results in
X ×m1∶d

n1∶d
Y = Fold[(1,2,...,N+M−2d);N−d] (X⊺[n;d]Y[m;d]).

3. TRINET TENSOR DECOMPOSITION
3.1. TriNet Model and Properties
As illustrated in Fig. 1, our TriNet decomposition factorizes
an N -th order tensor X ∈ RI1×I2×⋅⋅⋅×IN into third-order com-
ponents, including a set of N core factors {Gn}Nn=1 (dark cyan

Fig. 1: TriNet decomposition of X ∈ RI1×I2×⋅⋅⋅×IN with the
rank {rn,1, rn,2}Nn=1, where mod(N,3) = 0.

nodes) and a set of K relay factors {Ck}Kk=1 (yellow nodes).
For short, we denote the TriNet decomposition of X as X =
TriNet({Gn}Nn=1,{Ck}Kk=1). Here, the n-th core factor Gn is
of size rn,1 × In × rn,2 whose second mode corresponds to the
n-th dimension of the original tensor X . Particularly when
mod(N,3) ≠ 0, rN,2 = r1,1. We call the set of {rn,1, rn,2}Nn=1
as the TriNet-rank. Thus, the factors {Gn}Nn=1 encode mode-
specific information from X . While the relay factors {Ck}Kk=1
serve as connections among the core factors. The number of
relay factors is determined as K = 2⌊N

3
⌋ if mod(N,3) = 0 or

mod(N,3) = 1, and K = 2⌊N
3
⌋+1 if mod(N,3) = 2. Accord-

ingly, the size of Ck is specified as follows

Ck ∈
⎧⎪⎪⎨⎪⎪⎩

Rr
⌊
k
3
⌋+k,2

×r
⌊
k
3
⌋+k+1,2

×r
⌊
k
3
⌋+k+2,1 , if mod(k,2) = 0,

Rr
⌊
k
3
⌋+k,2

×r
⌊
k
3
⌋+k+1,1

×r
⌊
k
3
⌋+k+2,1 , if mod(k,2) ≠ 0,

(1)

for k = 1,2, . . . ,K −1, and the last relay factor CK is given by

CK ∈
⎧⎪⎪⎨⎪⎪⎩

Rr
⌊
K
3
⌋+K,2

×r
⌊
K
3
⌋+K+2,2

×r1,1
, if mod(N,3) = 0,

Rr
⌊
K
3
⌋+K,2

×r
⌊
K
3
⌋+K+1,1 , if mod(N,3) ≠ 0.

(2)

Formally, TriNet decomposition of X is given in Definition 1.
Definition 1 (TriNet Decomposition). Let X ∈ RI1×I2×⋅⋅⋅×IN

be an N -th order non-zero tensor. The TriNet model aims
to decompose X into a set of third-order tensors {Gn}Nn=1,
and {Ck}Kk=1. Mathematically, its TriNet decomposition X =
TriNet({Gn}Nn=1,{Ck}Kk=1) can be expressed as follows
X =A ×1,5

3⌊N3 ⌋+2,1
M⌊N3 ⌋

, if mod(N,3) = 0, (3a)

X =A ×3⌊N3 ⌋+2M⌊N3 ⌋
×1,3N+1,1 GN , if mod(N,3) = 1, (3b)

X =A ×3⌊N3 ⌋+2M⌊N3 ⌋
×N+1 GN−1 ×1,3N+1,1 C3⌊N−12 ⌋+1

×N GN , if mod(N,3) = 2, (3c)
whereMℓ = G3ℓ+1 ×3 C2ℓ+1 ×3G3ℓ+2 ×3G3ℓ+3 ×1,24,6 C2ℓ+2 and
A =M0∏ℓ=1 ×3ℓ+2Mℓ with 0 ≤ ℓ ≤ ⌊N−2

3
⌋.

In the following, we present useful properties that provide
insights into TriNet’s ability to represent higher-order tensors
and support its optimization, as discussed in Section 3.2. Due
to the space limit, we present key results and omit their proofs.

First, let n = [n1, n2, . . . , nN ] be a circular permutation of
the vector [1,2, . . . ,N], representing the reordered indices of
the core factors {Gn}Nn=1. Let k = [k1, k2, . . . , kK] denote the
corresponding reordering of the relay factors {Ck}Kk=1, aligned
with the new ordering of {Gni}Ni=1 and we denote by {Ckj}Kj=1.
Proposition 1 (Topology Invariance). Assume that X is
an N -th order tensor that admits the TriNet decomposition
X = TriNet({Gn}Nn=1,{Ck}Kk=1). If

Ð→X n = permute(X ,n)
for a given vector n, then

Ð→X n = TriNet({Gni}Ni=1,{Ckj}Kj=1).



Algorithm 1: TriNet-ADMM

1 Input: Observed tensorF ∈ RI1×I2×⋯×IN , missing set Ω, TriNet-rank r,
tmax = 1000, ϵ = 10−5, 1 < α < 1.5 and λ = 104.

2 Initialization: At t = 0,X (0) =F , and TriNet factors {Gk}
N
k=1, and

{Cm}
K
m=1 are generated at random, V = 0,M= 0, U = 0,N = 0,

µ(0) = 1, µmax = 100, γ(0) = 1, and γmax = 100.
3 while not converged and t < tmax do
4 for n = 1,2, . . . ,N do
5 G(t+1)n = Fold[2] ((µ(Mn)

(t)

[2]
+(Vn)

(t)

[2]
+

λX
(t)

[n]
(Y

(t)
≠n )

⊺

[yv;2])(µI +

λ(Y
(t)
≠n )[yv;2](Y

(t)
≠n )

⊺

[yv;2])
−1
)

6 M(t+1)
n = Fold[2] (SVT1/µ ((Gn)

(t)

[2]
− 1

µ (Vn)
(t)

[2]
))

7 V(t+1)n = V(t)n + µ(M(t)
n −G(t)n )8 end

9 X (t+1) = PΩ(F) + PΩc(TriNet(G(t),C(t)))

10 if t mod 20 = 0 and t ≤ 100 then
11 for k = 1,2, . . . ,K do
12 U(t+1)

k
= U(t)

k
+ γ(N (t)

k
− C(t)

k
)

13 C(t+1)
k

= reshape ((γn
(t),⊺
k

+u
(t),⊺
k

+

λx
(t),⊺

[n1 ∶nN ;0]
(Z
(t)
≠k
)
⊺

[zv;d])(γI +

λ(Z
(t)
≠k
)[zv;d](Z

(t)
≠k
)
⊺

[zv;d])
−1

, [1 ∶ d])

14 N (t+1)
k

= Fold[2] (SVT1/γ((Ck)
(t)

[2]
− 1

γ (Uk)
(t)

[2]
))

15 end
16 end
17 µ←min(αµ,µmax), γ ←min(αγ,γmax)

18 Check the stopping condition: ∥X (t+1) −X (t)∥F /∥X (t)∥F < ϵ.
19 t← t + 1

20 end
21 Output: Recovered tensorX , and factors {Gn}

N
n=1 and {Ck}

K
k=1.

This result suggests that the reordering of the modes or
dimensions ofX does not alter its TriNet core or relay factors.
The following proposition indicates the relation between the
n-th core factor Gn and mode-n unfolding matrix of X .
Proposition 2 (Mode-n Unfolding). Assume that the tensor
Y≠n is determined by contracting all relay factors {Ck}Kk=1
and core factors {{Gi}Ni=1/Gn}. The mode-n unfolding matrix
of X can be expressed as follows

X[n] = (Gn)[2](Y≠n)[yv;2],

where the ordering vector yv is defined as

yv =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[1,N + 1,2, ...,N] if n = N and mod(N,3) ≠ 0
or mod(n,3) = 1,

[1,N,2, ...,N − 1,N + 1] if mod(n,3) = 0,
[2,N + 1,1,3,4, ...,N] if mod(n,3) = 2.

Proposition 2 reveals an upper bound on rank(X[n]) ≤
min(In, rn,1rn,2) where rn,1 and rn,2 are the first and third
dimensions of the n-th core factor Gn. Proposition 3 exploits
the direct connection between the relay factor Ck and the orig-
inal tensor. Together with Propositions 2, they play the central
role in developing our method for computing the TriNet de-
composition and completion.
Proposition 3. Assume that the tensor Z≠k is determined
by contracting all core factors {Gni}Ni=1 and relay factors
{{Ckj}

kK

j=1/Ck}, for any circular permutation vector n of
[1,2, . . . , n] if k ≠K and mod (N,3) = 0, and n = [2,3, ...,
N − 1,1,N] otherwise. The relation between X and Z≠k is

x⊺
[n1∶nN ;0] = (ck)

⊺
[1∶d;0](Z≠k)[zv;d].

Here, the value of d is set to 2 if k = K and mod(N,3) = 2,
and 3 otherwise. The ordering vector zv is defined as

zv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[N − 2,N,N + 2,1, ...,N − 3,N − 1,N + 1,N + 3]
if k =K and mod(N,3) = 1,

[N − 1,N + 1,1, ...,N − 2,N,N + 2]
if k =K and mod(N,3) = 2,

[N − 1,N + 1,N + 2,1, ...,N − 2,N,N + 3]
if mod(k,2) = 0,

[N − 1,N,N + 2,1, ...,N − 2,N + 1,N + 3] otherwise.

3.2. TriNet-ADMM Method
In this subsection, we introduce an efficient alternating direc-
tion method of multipliers (ADMM)-based method for TriNet
decomposition and completion, namely TriNet-ADMM.

Let F ∈ RI1×I2×⋅⋅⋅×IN an incomplete observed data tensor
and let PΩ(⋅) represent the projection operator onto the set of
observed entries Ω. We define G = {Gn}Nn=1 and C = {Ck}Kk=1
as the sets of core and relay factors, respectively. The main
objective function is formulated as follows

argmin
X ,G,C,M,N

N

∑
n=1

K

∑
k=1

3

∑
i=1

∥(Mn)[i]∥∗ + ∥(Nk)[i]∥∗

+ λ

2
∥X −TriNet({Gn}Nn=1,{Ck}Kk=1)∥

2

F
,

s.t. Mn = Gn,N k = Ck, and PΩ(X ) = PΩ(F),
with n = 1,2, . . . ,N and k = 1,2, . . . ,K.

(4)

whereM = {Mn}Nn=1 and N = {N k}Kk=1 represent ADMM
auxiliary variables corresponding to G and C, respectively. The
corresponding augmented Lagrangian function is given by
L(X ,G,C,M,N ,V,U)

=
N

∑
n=1

K

∑
k=1

3

∑
i=1

∥(Mn)[i]∥∗ + ∥(Nk)[i]∥∗ + ⟨Vn,Mn −Gn⟩

+ µ

2
∥Mn −Gn∥

2

F
+ ⟨Uk,N k − Ck⟩ +

γ

2
∣∣N k − Ck ∣∣2F

+ λ

2
∥X −TriNet({Gn}Nn=1,{Ck}Kk=1)∥

2

F
, (5)

s.t. PΩ(X ) = PΩ(F) where V = {Vn}Nn=1 and U = {Uk}Kk=1
are Lagrangian multipliers; µ, γ > 0 are penalty parameters.

Our proposed ADMM-based algorithm for computing a
stationary point of (5) is summarized in Algorithm 1. For no-
tations, we denote vec(N n) = nn, vec(Uk) = uk, and I the
identify matrix. The operator SVTβ(⋅) refers to singular value
thresholding, i.e., if USV⊺ is the singular value decomposi-
tion (SVD) of A, then SVTβ(A) = Umax{S − βI,0}V⊺.
Next, Ωc denotes the complement of the observed index set Ω.

In terms of computational complexity, the overall cost of
Algorithm 1 is O(N ∑N−1

a=1 ∑
5
b=3 ca,bI

arb + NINr2 + Nr6)
flops, when we take In = I , rn,1 = rn,2 = r for all n, and as-
sume I > r. Here, ca,b is a constant bounded by 5⌊N/3⌋. Re-
garding theoretical performance, Lemma 1 indicates the con-
vergence of our algorithm.
Lemma 1. Denote S(t) = {X (t),G(t),C(t),M(t),N (t),V(t),
U(t)}t∈N the solution generated by Algorithm 1 at each itera-
tion t. When t→∞, the sequence {S(t)}∞t=1 converges almost
surely to a stationary point of (5).



(a) 4th order, noisy (b) 6th order, noisy

(c) 4th order, noiseless (d) 6th order, noiseless

Fig. 2: Averaged performance of TT, TR, FCTN, TW, and
TriNet on 20 synthetic tensors with missing ratio of 90%.

Observation TT TR FCTN TW TriNet Ground truth

Fig. 3: Reconstructed results on Toy (95% missing) and News
(95% missing) and Highway (80% missing).

Lemma 1 holds as the main objective function f(S)
in (4) is proper and continuous; the generated solution S(t)
is bounded and L(S(t)) is lower bounded at each iteration t;
and L(S(t)) satisfies the sufficient descent property and the
subgradient bound conditions [16]. Due to space limitations,
the mathematical derivations of Algorithm 1 and the detailed
proof of Lemma 1 are omitted here and will be presented in
our forthcoming journal version.

4. NUMERICAL EXPERIMENTS
In this section, we demonstrate the performance of TriNet on
both synthetic and real-world datasets, in comparison with
TT [8], TR [17], FCTN [10], and TW [11]. All experiments
were implemented in MATLAB R2019a on a machine with
32 GB RAM and an Intel Core i7-9750H @2.60 GHz.

4.1. Synthetic Data
Following the experimental setup in [11], we constructed a
dataset consisting of 20 synthetic tensors, including 10 ten-
sors of order 4 and 10 tensors of order 6. Each tensor was
generated using Tucker decomposition with factors derived
from U(0,1) and subsequently normalized to the range [0,1].
For 4th-order tensors, the dimensions were randomly selected
from {20,24,28} and for 6th-order tensors, from {7,8}. The
Tucker ranks were fixed at [5,5,5,5], and [2,2,2,2,2,2], re-
spectively. In this task, 90% of the data entries were supposed
to be missing at random and we applied the tensor network
methods for data imputation. Two levels of Gaussian noise in-
terruption were considered, including noiseless and σn = 10−4
(i.e., X noisy = X true + σnN where entries ofN were obtained
from N(0,1)). The parameters of algorithms (e.g., rank and
regularization parameters) were fine-tuned to achieve their
best performance. The reconstruction performance of the al-

Table 2: Mean PSNR values and run-times of state-of-the-art
tensor completion methods on real-world datasets.
Dataset TT TR FCTN TW TriNet

To
y

1% 18.548(13.55s) 20.304(122.97s) 16.923(21.33s) 20.645(255.67s) 22.061(78.20s)
5% 23.116(41.61s) 30.430(256.19s) 30.020(77.45s) 30.223(133.44s) 32.322(85.60s)
10% 24.468(97.72s) 35.500(363.43s) 34.322(127.32s) 37.113(322.66s) 38.133(152.21s)
20% 26.492(96.22s) 40.152(371.69s) 40.504(164.68s) 43.265(404.35s) 44.015(194.31s)

Time (s) 62.275 278.57 97.70 279.03 127.58

N
ew

s 1% 16.678(32.30s) 17.028(405.36s) 13.641(102.54s) 18.152(340.09s) 19.744(176.23s)
5% 20.389(88.33s) 25.848(427.87s) 25.411(225.64s) 27.089(372.40s) 28.038(188.85s)
10% 21.537(127.59s) 30.843(564.64s) 30.461(232.05s) 31.421(312.08s) 32.286(295.99s)
20% 22.580(164.14s) 33.184(560.79s) 35.811(362.58s) 35.842(348.13s) 36.297(203.89s)

Time (s) 103.09 489.67 238.20 343.18 216.24

H
ig

hw
ay 1% 22.234(23.89s) 23.787(296.57s) 24.981(258.88s) 23.850(416.46s) 25.447(269.86s)

5% 25.385(58.63s) 27.496(257.74s) 28.191(350.25s) 28.304(266.63s) 28.772(151.15s)
10% 26.307(82.83s) 28.809(333.09s) 30.008(162.52s) 29.826(319.39s) 30.614(169.22s)
20% 27.044(136.99s) 29.741(494.33s) 31.829(270.07s) 31.751(508.58s) 32.605(210.86s)

Time (s) 75.59 345.43 260.43 377.77 200.27
Bold: The best Underline: The second best

gorithms was measured using the Residual Standard Error
(RSE), ∥X est − X true∥F /∥X true∥F where X est is the recon-
structed tensor. As shown in Fig. 2, TriNet outperforms other
state-of-the-art tensor networks in all cases.

4.2. Real-World Data
Next, we evaluated the performance of the tensor network
methods on two real-world datasets, including Multispec-
tral Images (MSI: https://cave.cs.columbia.edu/
repository/Multispectral) and YUV video se-
quences (http://trace.eas.asu.edu/yuv/). For the
MSI dataset, we used the Toy image, represented as a tensor
of size 200 × 200 × 31 (corresponding to height × width
× spectral). We considered two color video sequences
from the YUV dataset, News and Highway, which were rep-
resented as a 4th-order tensors of size 144 × 176 × 3 × 20 and
144 × 176 × 3 × 50, respectively (corresponding to height ×
width × color × time). All tensors were normalized to
the range [0,1]. Experiments were conducted under missing
ratios of 99%, 95%, 90%, and 80%. As in the synthetic data
case study above, the algorithm parameters were fine-tuned to
achieve best performance.

Algorithm performance is evaluated using the mean peak
signal-to-noise ratio (PSNR), where a higher PSNR indicates
better reconstruction quality. The experimental results are il-
lustrated graphically in Fig. 3 and summarized statistically in
Tab. 2. As shown, TriNet achieves the best overall perfor-
mance in terms of reconstructed image and video quality (i.e.,
highest PSNR value). In terms of runtime, it is moderate-
slower than TT but considerably faster than TR and TW. For
the 3rd-order Toy tensor, TriNet runs slower than FCTN; how-
ever, for higher-order tensors (News and Highway), it outper-
forms FCTN in speed.

5. CONCLUSIONS
In this paper, we introduced TriNet, a novel and efficient ten-
sor network model that captures hidden interactions among
core tensors while simultaneously reducing the orders of both
core and central tensors, resulting in a more compact struc-
ture. Experiments on synthetic and real-world datasets demon-
strate that TriNet achieves a balance between computational
efficiency and accuracy, often outperforming state-of-the-art
tensor network models. Future work will focus on developing
adaptive and robust variants of TriNet to handle streaming data
and address potential data corruptions.

https://cave.cs.columbia.edu/repository/Multispectral
https://cave.cs.columbia.edu/repository/Multispectral
http://trace.eas.asu.edu/yuv/
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